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SUMMARY

Factors influencing effective program planning for V/STOL wind-tunnel testing are discussed. The plan-
ning sequence itself, which includes a short checklist of considerations that could enhance the value of the

tests, is also described. Each of the considerations, choice of wind tunnel, type of model installation,
model development and test operations is discussed, and examples of appropriate past and current V/STOL test
programs are provided. A short survey of the moderate to large subsonic wind tunnels is followed by a review
of several model installations, from two-dimensional to large-scale models of complete aircraft configurations.
Model sizing, power simulation, and planning are treated, including three areas in test operations: data-
acquisition systems, acoustic measurements in wind tunnels, and flow surveying.
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1. INTRODUCTION

Wind-tunnel testing continues to be a key activity in aircraft development. It has been particularly
necessary in the development of V/STOL aircraft because our understanding of the complex flow patterns

affecting a powered-lifting system and formulations of prediction theories, has continued to lag the require-
ment to design and build a V/STOL aircraft. Our present ability to predict details of aircraft performance
and of stability and control relies heavily on the use of integral flow modeling combined with paneling
methods based on potential-flow assumptions. The solutions and computer codes that apply the methods must be
efficient enough to be used with aircraft design optimization techniques. As computer capability improves,
computational fluid dynamics (CFD) will be used.

In any case, wind-tunnel testing will figure in many stages of the aircraft development from the initial
conception of the thrust-vectoring method using quasi-two-dimensional or semispan installations to testing of
full or scaled models of the aircraft configuration. Even though we do not have complete and reliable compu-
tation methods with which to supplant wind-tunnel testing, they will, in whatever stage of development, be an
integral part of the testing phase as means of correlating test results and, possibly, helping to restrict the
size of the test matrix.

As indicated by the other lecturers in this series, and in the overviews on V/STOL concepts given in
Refs. 1-3, it is a continuing objective in V/STOL development to make efficient use of all available on-board
energy for meeting requirements in maneuverability, maximum speed, range, and short field lengths (at an
affordable cost). The techniques in testing must be chosen carefully if it is to be ensured that the aircraft
designer has well-documented test data (which verify predictions) providing him with sufficient information for

preliminary design of the advanced version of the aircraft. At the same time, it is hoped that all the test
data can be sufficiently documented using the proper instrumentation to make it valuable as a data base to be
used for general aerodynamic study.

Because of these considerations, this lecture will concentrate on methodology with which an experimental-
ist must be intimately familiar in order to plan and complete a successful V/STOL wind-tunnel test program.
The approach draws heavily on some of the factors mentioned in Refs. 4 and 5, and it is assumed that the
reader can become familiar with the many other papers on V/STOL wind-tunnel testing, many of which will be
cited throughout the lecture. It will also be assumed that the basics of Pope and Harper (Ref. 6) and of
Pope and Goin (Ref. 7) are available. The lecture is organized into the following sections: _: an
introductory section outlining the development of a program; wind tunnels: a brief review of typical,
moderate-to-large size, testing facilities; V/STOL testing installations: a discussion of options or cate-
gories of wind-tunnel installations; model development: a consideration of model sizing criteria, possible
power systems, and construction techniques; test operations: a discussion of data acquisition systems, acous-
tic testing, and flow visualization.

Treatment is limited primarily to fixed-wing (V/STOL) testing as opposed to rotor-wing (helicopter) test-
ing. The author assumes V/STOL also applies to the tilt rotor or even to such designs as the X-wing (which
will not be mentioned), but there will be no treatment of rotary-wing testing.

2. PLANNING AND PRETEST PREPARATION

Before all the available tools for V/STOL wind-tunnel testing are evaluated in detail, the essential
objectives of the program must be considered, and, to a certain extent, the data analysis be addressed.
Unfortunately, such factors as budgets, time restrictions, continual technological advancements, and military/
commercial objectives prohibit writing this part in a textbook fashion, particularly for an aircraft develop-
ment program. This is true for most new experimental efforts, but is particularly true in V/STOL wind-tunnel
testing, where the amount of available testing time can be severely restricted because of high wind-tunnel
operational costs and costs required to support on-site testing.



Theplanningsequencewill bediscussedbrieflyasfollows:
1. Objectivesof all testing
2. Testparametersto beconsidered
3. Modeldesign
4. Wing-tunnelinstallation
5. Instrumentationanddataacquisition
6. Programmanagement

2.1 Objectives

Definition of objectives for V/STOL wind-tunnel testing must include considerations in two areas:

(1) establish the overall aerodynamic factors to be obtained from the test that will be essential to the pro-

ram involved, and (2) obtain an overall feeling for and commitment of the support available for the program

financial and otherwise). For a development program, for example, this can mean obtaining a decision based on

studies as to how significant additional aerodynamic lift is related to the aircraft mission weight and cost.

Obviously the two are interrelated to the extent that in the end analysis, the available support establishes

the complexity of the model and the type of wind tunnel that can be used. Examples of past wind-tunnel

programs with various levels of each factor are shown below.

Factor

Aerodynamic scope Project support

Jet-in cross flow Component tests Minimal budget

USB large-scale tests Complete model Low budget
Tilt nacelle tests Component tests Low budget

Grumman 698 Complete Large budget

AV-8B 40 by 80 tests Complete aircraft configuration Large budget

It should be understood that any of these cases could vary widely in model complexity and instrumentation

requirements. The second factor, project support, will not be included in any further discussion but the

principals in "aerodynamic scope" will be addressed. An additional item concerning the above test installa-

tions is the possible justification for large-scale testing. This will be addressed in a following section.

2.2 Test Parameters

For most wind-tunnel test planning, Margason (Ref. 5) has provided an excellent checklist defining the

objectives of an investigation. As is usually the case for any wind-tunnel investigation of complete config-

urations, the test results will include aerodynamic forces and moments for performance and stability. These

characteristics may include aerodynamic propulsion-induced effects for transition flight (Fig. 1) as well as

hover. Throughout this flight regime the test parameters must be chosen to define the complete flight enve-

lope with assurance that the thrust effects are obtained. The configuration variables should be chosen and

the construction of the model planned so that significant variables, such as flap settings or nozzle deflec-

tions, can be evaluated. It is at this point that a judgment in the importance of exact duplication of all

aircraft details be made. In planning for either a small wind-tunnel model or in large-scale testing (Ref. 4),

this cannot be completely accomplished for a number of reasons; as a result, a concentrated effort should now

be made to establish areas in which direct duplication of the full-scale aircraft are not essential for

evaluating aircraft flight characteristics.

2.3 Choice of model

It is at this point that the model design factors, such as model size, facility availability and model

systems, should be considered as part of the planning. This will be directly influenced by factors discussed

in appropriate sections of this lecture. However, there are several general considerations that can be made

at this point.

2.3.1 Model size

Anticipated scale effects can have varying significance on the choice of model size depending on how

close to production the aircraft to be investigated is, how well defined the details of the final configura-
tion are, and how significant the local areas of flow separation are in their effect on the data. For pur-

poses of discussion, model scale will be referred to as small, less than 0.2 scale, moderate, 0.2-0.5, and
large, larger than 0.5 scale. For exploratory investigations with simplified models and for low flap settings
and angles of attack, and where accurate corrections are possible, small-scale models can be most economical
and produce reliable wind-tunnel test results. This certainly was the case in the early AV-8B development
(Ref. 8) in which a powered O.15-scale model was developed by modifying an available flow-through nacelle
model. The resulting comparison with large-scale tests (Fig. 2) showed good comparisons with full-scale data
in the linear angle-of-attack range. As might be expected, control and flap lift were slightly lower for the
small-scale (Ref. 9) tests. More factors about both the large- and small-scale investigations will be dis-
cussed later since they are classic examples of coordinating both large- and small-scale aerodynamic testing
in V/STOL aircraft development.

As noted in Ref. 4, there have been several well-documented demonstrations of the significance of scale

effects. These are reprinted in Figs. 3 through 7. For components of models, the actual size or local

Reynolds numbers may be very small compared with that of the complete aircraft configuration. This was the
case for the examples shown in Figs. 3-5, where the small-scale data indicated lower stalling angles for the

inlet, deflector vanes, or leading-edge slats. On the other hand, there may be a "size effect" for the com-

plete aircraft configuration such as the one for the small- and large-scale installations of Fig. 6 (deflected

slipstream transport model). The large-scale model was powered by PW JT15D engines and tested in the Ames

40- by 80-Foot Wind Tunnel. The small-scale model was powered by ejector propulsion simulators, and the rela-

tive size and shape of the 40 x 80 test section were simulated. The differences in the two sets of



longitudinal characteristics, shown in Fig. 7, are probably not only scale effects but may be due to the

nonsimilarity in both inlet and exit flow, particularly where jet efflux and its velocity profile effects the
induced lift from the flap.

2.3.2 Power Systems

The previous example of the importance of simulating the jet efflux in any powered-lift test is one of
many which can probably not be completely documented but in which wind-tunnel testing produced erroneous per-
formance estimations of the aircraft flight characteristics. As is discussed in Sec. 5.2, the current trend
is to attempt to simulate the actual engine flow including bypass ratio. The CMAPS (see Sec. 5.2.4) is such
a device on which its full application potential is currently being evaluated. The ejectors, developed in the
1960s and which powered the smaller model of Fig. 6 produced a uniform exit flow but were limited in exit
pressure ratio and did not simulate the inlet flow rate for a given thrust level. A very valuable workhorse
has been the tip-driven fans which have been built in several sizes up to more than 12 in. The driving factor
in the use of any of these propulsion simulators is the need to get high-pressure air into the model and, if
the forces and movements of the entire lifting system are required, that air must be "jumped" across the sting
or wind-tunnel balance. The flexible lines, coil, or other transfer means can have significant effects on the
design and cost of the model. At this point, if large- or full-scale testing is contemplated, several schemes
of building a large but subscale model such as that of Fig. 8 should be considered. In this case, a model was
built using 2-J97 turbojet engines which were 0.7 scale of a two-engine fighter design (see Sec. 5.2). Plan-
ning for the power system must be integrated with other considerations, including the compatibility of the
facility with the wind tunnel.

For rotary-wing projects, the power systems for some generic rotor tests are variable frequency electric
motors. For example, the Ames 40 x 80 rotor test bed shown installed in Fig. 9 is driven by two 1,500 hp
variable-frequency motors coupled together. Air-driven and hydraulic-powered motors are also used for small-
scale rotor tests.

2.4 Wind-Tunnel Installation

At this point in the planning sequence, the investigator must have a working plan that includes the aero-
dynamic experiments needed to meet his objectives and must consider what model support and wind-tunnel test
facilities are required. A table might be assembled similar to the one shown in Table I for in-flight jet
noise simulation; it is described in Ref. I0. A section in this lecture covers typical wind-tunnel facilities
that are available. Let it be stressed that for the particular demands of V/STOL testing, any choice should
include consideration of the equipment and staff that could be made available to the program. Reference 11

or its equivalent will provide important parameters of candidate wind tunnels, but a meeting with the staff of
each facility should be held to determine availability. Topics pertinent to V/STOL testing, among many other
details should include:

1. Availability of electrical power or high pressure air.

2. Model motors and engine simulators available and maintenance required.

3. Capacity and currency of data-acquisition systems; the value of planned testing depends on reliable
documentation of power for each test condition, and this is probably one of the most important topics in the
_lanning.

4. Model support and balance hardware: for rotary-wing testing, few wind tunnels are currently equipped
with all the support hardware needed- meaning added cost to the experimenter. For air-driven tests, rotary
wing or otherwise, metering and air-transfer equipment are essential topics.

5. For acoustics tests, factors listed in Ref. 10 should be discussed.

6. For large- or full-scale testing, using gas turbine engines, specific items such as maintenance
required, fuel, fire control, hydraulics, and start-stop requirements should be discussed. For the Ames

40 by 80, length of testing before temperature limits are reached is an important consideration, although
planned improvements in ventilation will extend these limits.

After power systems and wind tunnels have been adequately considered, it is recommended that the combina-
tion of model scale or size and type of wind-tunnel support be readdressed. The important factor of magnitude
of wall-constraint effects for all projected test conditions may never be answered until after the testing is
complete but, as noted in Sec. 5.1., advancements in computational fluid dynamics (CFD) are taking an increas-
ingly essential role in this area. Information that could serve as a guide has been accumulated using the
Ames 40 by 80 for tests on widely varying V/STOL aircraft configurations. The resulting wind-tunnel and
flight-test data correlations were used to obtain the charts shown in Fig. i0 (Ref. 4 with G698 data added).
Data for both lift and momentum, as well as wing-span sizing, were obtained. The lines, representing possible
size limits, have been somewhat arbitrarily drawn in the charts to represent guidelines for good wind-tunnel
flight comparison under balanced conditions, and all data were obtained on complete lifting systems.

The possible acceptability of using partially complete models or component tests should be considered.
Most wind tunnels now in operation have a full stock of the hardware needed for semispan mounts and, if not,
it usually is relatively inexpensive to manufacture the needed parts. Where lateral and directional character-

istics are not required, the semispan mount is an economical method of studying high-lift characteristics,
power-component performances, and loading on all parts. There is enough well-documented testing experience
to ensure quantitative measurements and to evaluate most questions concerning effective aspect ratio. As

examples, the large- and small-scale installations shown in Figs. II and 12 were tested in the Ames 40 by 80
and 7 by i0 wind tunnels, respectively. Objectives of both tests were to evaluate the performance and span-
wise effects both in hover and during transition (Refs. 12 and 13). For the 40 by 80 tests, even though the
effective wing-span-to-tunnel-width ratio was about 0.4 the wind-tunnel wall effects were minimal caused by
the effective depth (80 ft) of the tunnel and the geometric aspect ratio, assuming the end plate (which was
fixed and nonmetric) was the reflection plane. For the 7 by I0 tests (Ref. 13), the model size relative to



the wind-tunnel cross section was much larger, but quantitative measurements were still obtained on the

ejector performance and its influence on the external aerodynamics of the wing. For this case, accurate

evaluation of hovering performance was obtained in the wind tunnel with the large side access door open and

blowing the ejector exhaust into the shop area.

2.5 Instrumentation and Data Acquisition

During the foregoing considerations it must be assumed that model instrumentation and data acquiring and

processing have been assigned significant roles in the planning. The continuing development of microprocessors

and more economical computer systems must be considered in choosing the data-acquisition objective. For

example, it is becoming mere feasible to obtain a significant amount of pressure data along with the overall

force and moment data and a few directly measured component loads. Nevertheless, as indicated by the possible

measurement needs for a V/STOL investigation listed in Fig. 13, the advantage of using large-scale solely for

the purpose of storing on-board data-acquisition equipment may still offset possible higher model construction

costs for the large models. To obtain all the items that can be evaluated on board one large-scale model, it

is possible that two-small scale models would have to be built or that at least a force and a pressure model

would be built. It is, therefore, essential in planning to evaluate the state of technology of such items as

electronic Scanivalves, straingage or capacitance balances or both, or flow-survey equipment.

Most established wind-tunnel facilities are continually evaluating and updating their data acquisition

equipment and, during discussions with the wind-tunnel staff the potential limits on instrumentation should be

thoroughly discussed. Since current V/STOL testing taxes the most up-to-date computer system, it has been my

experience that a program can be enhanced by the experimenter using an auxiliary small computer for some of the

measurements that can be correlated using a time-code with the data reduction supplied by the wind tunnel. For

rotary-wing testing, dynamic analysis hardware and software are now available at most of the larger wind

tunnels. At the NASA 40 by 80, this system is on-line and is an essential part for a safe and successful test

procedure.

2.6 Test Program

Having obtained the above information and made the decisions and commitments, a written test plan should

be produced and distributed to interested parties to ensure that agreements were as perceived. Except for

smaller programs, which are funded and activated in-house, this is good practice for any experimental effort,

but it is essential for V/STOL testing to the extent that all those designated in Fig. 14 be informed. The

particular examples shown in Fig. 14 were large-scale test programs, but they are still representative in terms

of the significance of planning and coordinating most V/STOL wind-tunnel test programs. They are presented in

the order of increasing program costs with the numbers listed corrected for 1983 cost-of-living levels with

respect to the level existing at the original test dates. The following is a brief description of each as

reprinted from Ref. 4.

The test results for the project of Fig. 14(a) are reported in Refs. 14 and 15. This was an internally

managed, basic-research, project with the objective of studying stability and control, high-angle-of-attack

characteristics through stall, and acoustics. Project management came from Ames Low Speed Aircraft Research

Branch (FNA) with both an engine and an airframe manufacturer acting as consultants. Final reporting was done

by Ames.

Test results for this project shown in Fig. 14(b) are reported in Refs. 16-18. This was a U.S. Navy-NASA

funded program, managed by NASA, with the objective of obtaining static (in and out of ground effect) and

wind-tunnel data for loads, stability and control, and performance. The model was heavily instrumented to

document propulsion and external-surface pressures. The test management came from the Ames Aircraft Project

Office, with the FHA serving as advisors. The airframe contractor supported the tests with design, test

support, data analysis, and reporting.

Test results for the project of Fig. 14(c) are reported in Ref. 19. This was U.S. Navy funded with test

management coming jointly from the FHA, the contractor, and the Navy. The model was equipped primarily for

full-scale stability, control, and performance checks with the instrumentation required to document power

settings together with a few loads. The cost of the model was an order of magnitude higher than those in the

foregoing projects because the model combined a fuselage flight structure with the Rolls Royce F402-R-402
engine and a boiler plate wing-flap system. In addition, since the tests were part of an aircraft development

program on a tight schedule, it was highly "visible," and a large number of contractor personnel were required

to support the operation of the tests and correlate test results on a daily basis.

Each of these projects has proved to be productive, with the first program being the forerunner of the
NASA Quiet Shorthaul Research Aircraft (QSP_A); the last program is currently near the production stage. All

projects included considerable wind-off testing, as well as wind-tunnel work, and measurements obtained were

in the following areas of study.

1. Stability and control

2. Aerodynamic performance

3. Propulsion performance, inlet and nozzle

4. Loads on flaps and control surfaces

5. Surface-pressure measurements on all components

6. Boundary-layer surveys

7. Acoustic studies, near- and far-field

8. Wake surveys, downwash, sidewash

9. Static pressures on tunnel walls to evaluate wall effects
10. Flow visualization

11. Structural static and dynamic loading

12. Aircraft systems check

All of these topics plus those pertinent to rotating-wing systems continue to be subjects of V/STOL wind-

tunnel testing, and the remainder of this lecture will address details to be considered in their measurement.



3. WIND TUNNELS

This section presents a short survey of available wind-tunnel test facilities that have, in general,
large test sections, are subsonic, atmospheric, and have sufficient support equipment and personnel for test-

ing a complete, powered V/STOL aircraft model through transition speeds. The section is not intended to be a
complete survey but rather one that indicates types of wind tunnels and equipment that are available. For
this reason, only one large industrial tunnel is mentioned; only the high-speed and pressurized wind tunnels
at Ames are listed, though they are not described in detail.

For evaluating the capability of a wind tunnel for V/STOL testing in which flow separation may be
occurring at anytime during normal flight operation, it could be assumed that the flow quality in the test
section may have a large effect on the power-induced aerodynamics. Because of this, at most of the large wind
tunnels, considerable effort has been made to evaluate and improve these characteristics. The significance
of flow qualities is discussed in Refs. 20-22 but, for V/STOL, they should include turbulence as well as
uniformity of test-section dynamic pressure. Unfortunately, except for the DNW and Langley 4- by 7-m tunnels,
complete documentation of these characteristics was not available at this time.

3.1 DNWWind Tunnel

The DNW facility is probably one of the most recently developed. A general description appears in
Ref. 23, and a compilation of calibration data is included in Ref. 24. As indicated in Fig. 15, the wind
tunnel is a closed-return design and has interchangeable test sections. The latter include 6 x 6 m, 8 x 6 m,
and 9.5 x 9.5 m sections as well as an open section for acoustic testing for which longitudinal slots are
provided in the walls permitting an open-to-close area ratio variation up to 12%. Flow qualities measured to
date are excellent with a deviation of static and dynamic pressure across the test section of less than 0.3%
flow angularity ±0. I °, and a turbulence level of 0.1%.

The facility has hardware for either floor or sting mounting, l_qe sting has sufficient degrees of freedom
to allow strictly vertical movement without pitch change or pitch and yaw without vertical or lateral displace-
ment. The hydraulic actuation allows a downward velocity of 5 m/sec at 0.5 g for possible use in flare simu-
lation. As with most modern sting arrangements, a high-pressure air-supply line is included to supply com-
pressed air to the model. Floor mounting to the external balance is p_ssible for either strut-supported or
semispan models. For gound-effect tests, a 6.3 by 7.6 m (width to length) moving belt can be installed in the
two large test sections with a belt speed of 5-60 m/sec. The open-throat feature has been designed for use in
acoustics studies. An acoustic evaluation of the facility is reported in Ref. 25.

3.2 8-m ONERA Transonic Wind Tunnel

The ONERA facility has been operating since the 1950s in Modane, France (Ref. 26). The Mach number range
is from 0.03 to 1.02, which might enhance its utility for V/STOL testing by making it possible to test with

the same model installation from low transition airspeeds to transonic speeds. Although, as discussed in
Sec. 5.3, it may not be practical or economical to do this. The facility has a round test section but is

equipped with a blown ground board for handling strut- as well as sting-mounted models. An important feature
affecting test operations is the ability to exchange test sections, with options such as those shown in
Fig. 16(b). For complicated powered models with a network of instrumentation needed, this makes it theoreti-
cally possible to make all the pretest checks while another project is occupying the tunnel.

3.3 Langley V/STOL, 4- by 7-m Wind Tunnel

The circuit of the Langley V/STOL facility is shown in Fig. 17. The test section is 4.42 m (14.5 ft)
high by 6.63 m (21.75 ft) wide and 15.2 m (50 ft) long. The maximum speed is 103 m/sec (200 knots) and it
can be operated in a variety of configurations - closed, slotted, partially open, and open, the latter being
open on three sides. Studies have been conducted on methods of improving the flow quality in the test section
(Ref. 27). Nevertheless, the wind tunnel has continued to be an essential tool in NASA's low-speed experimen-
tal aerodynamics studies and has most of the hardware required for supporting models either by a sting or by

using a floor-mounted strut. A moving-belt ground plane is also available. The effort to improve the flow
quality and productivity will take a significant step when the wind tunnel undergoes major modifications in
late 1984.

3.4 Boeing V/STOL Wind Tunnel

The Boeing tunnel (Fig. 18) is a typical industry-managed facilitywhich is kept uo-to-date as required
for company developmental testing, as well as for industry-wide and government-supported programs. There is
an option of a 6.6- by 6.6-m (20- by 20-ft) or an open-throat test section, as shown in Fig. 19, with the test
section open on both sides. The particular model installation shown is for a small-scale aero-acoustic test
for which the model design is discussed in Sec. 4.1.3. This wind tunnel also has the options for either strut-
or sting-supported tests. At present, the tunnel is capable of maximum speeds of 250 and i00 knots for the
closed and open test sections, respectively.

3.5 Ames 40- by 80:ft/80- by 120-ft System

The Ames 40- by 80-ft has been in operation for about 40 yr, but a recent project (described in Ref. 29)
has extended the speed range and added a new test section installed in another "leg" as shown in Fig. 20. To
do this, a new drive system has been installed, and vanes are being designed to divert the 80 by 120 test
section inlet flow into the fans through the new inlet. It is too early to detail all features of operating
in the 80 by 120 test section but the 40 by 80, as it was originally conceived, has proved an invaluable tool
for investigating V/STOL aerodynamics, as well as flight-like aircraft systems. With reference to the 40 by
80 test section shown in the elevation view (Ref. 30) of Fig. 21 (updated to show recent changes), the large
(and sometimes very heavy) models or aircraft are moved into the outer "high bay" ground level or "2 ft level"
and, when readied, hoisted up over the clamshell doors onto the support system. A three-support model instal-
lation (the full-scale model of the Grumman tilt-nacelle configuration G698) is shown in Fig. 22. A sketch of
the 80 by 120 test section is shown in Fig. 23, viewed from outside the test section.



Thesizeof sucha testsectionasthe40by80hasallowedspecialstudiesandtestsonaircraftcom-
ponents;for example,theacousticinvestigationwithaninstallationshownin Fig.24(a)(seeSec.6.2.2)and
thesmall-scalehovertest in Fig.24(b).In thelattercasea"flying"groundplanewasusedto incorporate
pitchandroll effectsintothebasicground-effectstudy.Thedata-acquisitionsupporthardwareandpower
systemshavebeengraduallyupdatedthroughtheyears,andcurrentdatasystemsincludeanon-boardsystem
thatcanbemadecompatiblewithflight-testinstallations.Mostlarge-andfull-scalemodelscanonlybe
practicallysupportedfrombelow,butformoderatelysizedmodels,sting-supporthardwarehasrecentlybeen
madeavailable.Sinceaircraftenginesat thisscalearecommonlyrunin thetestsection,availablesupport
systemsincludethosefor fuel,C02andengineservicingequipment,andthepowersystemsusuallyavailable,
suchasair supplyandvariablefrequencypower.Thefacility hasagroupof qualifiedaircraftmechanics.
3.6 Langley30-by60-ftWindTunnel

TheLangley30by60is aclassiclarge-scaleinstallation,andhasbeenin operationsincethe1930s.
Thecircuit is shownin Fig.25. Asshownin Fig.26,it is anopen-throattunnelwiththemodellocatedjust
in frontof thefans. It hasbeenusedfor thedynamicstabilityandcontrolstudiesdescribedin Refs.31
and32anddiscussedin Sec.4.4.1. Thewindtunnelhasbeenutilizedquiteregularlyin aviationdevelopment
aswasthecasefor theinstallationin Fig.26. Unfortunately,becauseof theporximityof thetestsection
to thedrivefans,validacoustictestinghasbeendifficult.
3.7 NRC9-mV/STOLWindTunnel

Exceptfor DNW,theNRC9-mwindtunnel(Ref.33)is oneof thenewestlow-speedtunnels,havingbeenin
servicesince1970.Its developmentincludedtestingof a i/lO-scalemodelof thewindtunneland,although
quantitativevaluesof flowturbulencearenotavailablefor publication,thereis asetof screensimmediately
upstreamof thetestsection.Mostof theV/STOLtestingexperienceto datehasincorporatedafloor-mounted
strutsystemsuchastheinstallationshownin Fig.27,whichis connectedto thebalancesystembelowthe
floor. Oneparticularassetfor air-drivenV/STOLtestingis thecow,pressedair supply.It hasnearlyfull
useof theNRCBlowdownWindTunnelsupplywhichproducesdryfilteredair at 2050kPa(300Ib/in.2). Atthe
windtunnel,thismeans1,700kPa(250Ib/in.2) for 30kg/sec(45Ib/sec).Unfortunately,heatingcapability
is limited.
3.8 OtherWind-TunnelTestFacilities

Theforegoingbriefsurveyhasidentifiedsomeof thelargerwindtunnelsthatareatmosphericandhave
completefacilities for bothfixedandrotary-winginvestigations.NotdescribedweretheUnitedKingdom
largesubsonictunnels,theLockheedtunnel,thehigh-speedtunnelssuchastheAmesUnitarySystem(Fig.28),
andthe12-ftpressuretunnel.Thell-ft testsectionof theUnitarySystemis capableof holdingacontinu-
ousspeeddownto M=0.4 sothataprogramcancoversubsonicairspeedsfor modelsdesignedfor transonic
andsupersonictesting.TheCMAPSprogram,at Ames(seeSec.5.2.4)is designedto makesuchtestingevantu-
ally practicalbyaccuratelysimulatinginlet andexit flows. Inaddition,therareseveral7by10wind
tunnelsin academia,government,andindustrywhichcanbeusefulfor small-scaleorcomponenttesting.

Oneof themosteconomicalsystemsof wind-tunneltesting,particularlyasit is appliedto V/STOLtest-
ing,is theonedescribedbyKnott(Ref.34)andoperatedbyBritishAircraftCorporation(BAC),Military
AircraftDivision(Fig.19). Thetestsectionis 5.5m(18ft) wideand5.0m(16.5ft) high,butthesystem
operatesoveranarrowspeedrangeof II to 21m/sec(35to 70ft/sec). Thisrequiresaninstalledpowerof
only200kW(250hp). Thereis somedisadvantagein thattheexistinginstallationis theopen-throat,
no-returntypeandits test-sectionflowqualitiesare,therefore,subjectto weather.Thedesigntrade-off
may,then,beoneof flowqualityrequiredagainstthecostof screensandflowstraightenersresultingin
increasedpowerrequired.ThetestingandscalingtechniquesassumethatMachnumbersimulationis not
important.Table2showstypicalvaluesfor thetestvelocitiescomparedwithfull-scalevalues.Amajor
advantagecouldbelowermodelcostsandloweron-boardpowerrequirements.Thisalsocouldmeana"lower
profile"supportsystemrequiredto takethelowermodelloading.

4. TESTINGINSTALLATIONSFORV/STOL
Sincethechoiceof thepropertestinginstallationdependsonmanyfactors- nottheleastof theseis

cost- it wouldbemeaninglessto suggestanygivenprocedurefor choosingthemodelinstallations.The
followingareexamplesof testprogramsthatinmostcases,proceedthroughavarietyof wind-tunneltest
setups.

Muchinformationcanbeobtainedfromsuchexploratorytestsasthatshownin Filg.30(Ref.35),which
hadtheobjectiveof evaluatingcharacteristicsin hoverandforwardflight for aground-effectvehicle-the
"Avro"car. Thistest, in theAmes7-bylO-fttunnelwasmadeafter40by80testsshowedthefull-scale
vehiclehadalargeaerodynamiccenterlocationchangeasit lifted outof groundeffect. Thesmall-scale
testwasaverylow-costeffortto investigatethefundamentals.Asamplingof thetestresultsis shownin
Fig.31. Groundeffectwasmeasuredverycloseto thegroundboard.Althoughnotdone,thedatacouldhave
beencorrectedfor thedisplacementthicknessof theboundarylayerbythemethodsimilarto thatsuggested
laterbyEast(Ref.36):

_* aC a_* aC
Ccorr = Cmeas x TT_+-_X- _-_

where the gradients of C are determined by carrying out additional tests with other boundary-layer thick-

nesses. No moving belt was needed with BLC being planned for but not used and qualitative correlations were
made with the full-scale data.

An example of a more sophisticated (and more costly) test is that of the Grumman 698 tilt-nacelle devel-

opment. It was decided that a full-scale test was needed to verify control which might be available from the

698 control-vane effectiveness design. A component test installation in the Ames 40 by 80 tunnel was used



(Ref.37). ThenacellewaspoweredbytheQ-fan(Ref.38),andwasmountedonthe40by80wind-tunnelturn-
tableasshownin Fig.32,whichprovidedthenacellewitha largeangle-of-attackrange.Inthiscasethe
inlet andfanitself werethesubjectof anotherinvestigation(Ref.39),sothattwotestobjectivesweremet
usingcommonhardware.

Athirdexample,thatof thedevelopmentof theXFV15tilt-rotor aircraft(Refs.40and41),includedthe
seriesof testinstallationsshownin Fig.33. Goingto a higherdiskloadingandamoreusabledrivesystem
meantaseriesof testsvaryingfromsmall-andlarge-scalesemispanmodelsto testingtheactualaircraftin
theAmes40by80tunnel.

Therangein possibletypesof installationsvaryingincomplexityandcostbetweenthoseof theprevious
examplesis large,andthetestobjectivesarediverse.Inthefollowingdiscussion,experiencewithtest
installationsvaryingin typeandcomplexitywill bediscussedinmoredetail.
4.1 PartialInstallations

Eventhoughfor V/STOLinvestigationsit is usuallyessentialto simulatethecompleteaircraftconfigura-
tionin thefinal aerodynamicevaluationof theaircraft,componenttesting,two-dimensionaltesting,and
quasi-two-dimensionaltestingcantakeamajorpartin theprogram.Examplesof theseinstallationsfollow.
4.1.1Componenttesting

Inoneof thepreviousexamples(Fig.32)it wasnecessaryto establishthecontroleffectivenessof the
pitch-controlvanebeforegoingaheadwitha full-scalemodel.In thattest, thedataof Fig.34verified
predictionsthatthefaneffluxwouldprovidesufficientcontroleffectivenessthroughawiderangeof nacelle
attitudes.Thevaneloadsandfanflowsweredocumentedwithsufficienton-boardinformationto establish
designinformationfor proceedingwiththeprogram.Notethatin thiscase,it didnotseemnecessaryto
simulatethewingor fuselageinterferenceeffects.Thiswouldbethesubjectof thenextphase-afull-scale
modelanorderof magnitudemore.costlythanthisone.

Fora two-enginefighterconfiguration,overheadinlets haverecentlybeeninvestigatedbySmeltzeret al.
(Ref.42)andDurstonandSmeltzer(Ref.43),usingacomponentorpartiallycompletemodelinstallation,as
shownin Fig.35. Theinlet regionof themodelwassufficientlyinstrumentedto obtainbothexternalflow-
field contoursforwardof theinlet andinlet distortionandpressurerecovery.Thiswasdoneusingfive-hole
coneprobes.Theforwardpartofthemodelwassufficientlysimulatedto relatechangesin leading-edgecon-
figurationto flowat theinlet planefor bothsubsonicandsupersonicspeeds.Themodelhadflowthroughthe
nacelles,butmeteringplugswereaddedto varyflowthroughtheinlet.

CertainbasicStudyprojectsandkeyexperimentscanalsobeplacedin thiscategory.Manyresearchers
havebeenaccumulatingwind-tunneldataonthejet-in-crossflowproblem,asreportedin Refs.44-46for the
installationof Fig.36. Initially, this typeof experimentwasstartedwiththeuseof aflat plate,as
shownin Fig.37,witha10-cm(4-in,)jet issuingfromthecenter.Then,usingasmallertestsection(Ames
7by10),thebodyof revolutionandanotherflat plateweretested.All testshavebeencloselycoordinated
in objectiveandscope,thatis, to evaluatethepressureonthesurfacesurroundingthejet exitandto study
theflowin thejet itself. Fromthisdatabase,severaljet modelsof thejet-in-crossflowproblemarebeing
evaluated,amongthembeingthediffusevortexmodelof FearnandWeston(Ref.45). The5-cm(2-in.)jet
modelhasalsobeenusedrecentlyto studytheflowcharacteristicsusingathree-componentLDVtechnique
whichis describedin Sec.6.3.2.
4.1.2TwoandQuasi-Two-DimensionalTesting

Beforethesignificanceof powered-lifteffectsonairfoil sectioncharacteristicswasfully realized,
airfoil sectionalcharacteristicswereaccuratelyevaluatedusingtest installationsof constantchordand
spanningthewidthof thewind-tunneltestsection.Theheightof thesetunnelswasgenerallymuchmorethan
theirwidthto minimizeblockagecorrections.Forhighor poweredlift airfoils thetechniquehasbeensuc-
cessfullyappliedusingprecautionsfor preventingflowseparationontheendwall. Inonecase(Ref.49)for
theinstallationof Fig.38,apowerednacellewasaddedto atwo-dimensionalhigh-liftexternallyblownflap
(EBF)installationto evaluateleading-edgestall controlandturningeffectiveness.Asin thecaseofany
airfoil adjoiningaflat plate,theadversepressuregradientontheairfoil is transmittedto thewind
tunnelor end-platewalls. Apositivewayof controllingthis is to uselocalBLCat critical locationson
theplateitself.

Thiswasalsodoneto thequasi-two-dimensionalmodelshownin Fig.39. Inthis instance,theobjective
wasto studyeffectsof airspeedonaspan-wiseejector(Ref.50)andto derivethetwo-dimensionalsection
characteristicsof sucha high-liftdevicefor correlationwithlarge-scaletestsonacompletemodelconfig-
uration.It wasfoundthatalthoughthetwo-dimensionaleffectiveangleof attackcouldnotbeevaluatedto
muchcloserthan±2°, theeffectiveaspectratiowassufficientlylarge,- approximately8 (basedonthe
power-offdragpolar)- to makethepower-ondatausefulinevaluatingtheejectorperformanceasfunctionsof
bothpowerandangleof attack.Thekeyto suchaninstallationis thedesignof theendplate. Thereare
veryfewpublisheddataonlargeendplatesexceptthosebyRiley(Ref.51);morerecentstudiesarebeing
directedat dragreductionof higheraspectratiowings.Fortheinstallationof thehigh-speedevaluationof
wingcruiseblowingsystembyMahal(Fig.40;Ref.52)theangleof attackwasevaluatedas

=_geom- k Cn
k =3.54- 1.26(1- M2)I/2

Thisis consistentwithall thepower-ondataobtained,andwasusedin evaluatingtheeffectsof blowingon
thedragriseMachnumberat atargetcruiselift. Thisinstallationshowninstalledin theBoeingwindtunnel
(Fig.40)hadanendplatethatwascontouredto minimizedragat highsubsonicspeeds.All datawerein the
formof surfacepressuresintegratedto givelift andpitchingmovementwithmomentumrakedatabeingused
for dragevaluation.



4.1.3 Semispan Installations

Semispan models have been widely used in the conceptual stage of a high-lift concept. In the 1950s very
economical installations, such as the one described by Anscombe and Williams (Ref. 53) and shown in Fig. 41

were developed. The advantages over complete aircraft simulations are lower cost plus larger scale potential
for a given test-section size. The main disadvantage is lack of any lateral-directional information and,
possibly, questionable pitch control-data. Most installations rely on the use of either a mechanical or
electrical balance, located below the floor.

A major choice for such an installation is whether to have the model include a half fuselage that is
metric, such as the one in the sketch of Fig. 41; a.fuselage that is nonmetric, or attached to the wind tunnel

floor; or an end plate that is nonmetric with the wing protruding through it. Except for exploratory tests in
which the longitudinal characteristics of a canard/tail-wing configuration are needed and each component must
be repositioned, the author is partial to the use of the metric half fuselage. Experience in the Ames 40 by 80
with the semispan installation of Fig. 11 (Ref. 12) has been excellent to the extent that approximate correla-
tions were made with a complete jet flap wing-fuselage model. For the installation of Fig. Ii, the root or

effective plane of symmetry was raised to be clear of the floor boundary layers. The test reported in Ref. 54
and shown in Fig. 42 incorporated a half fuselage that pitched with the wing but was nonmetric and attached to
the floor fairing of the tunnel. The disadvantage of this is sealing problems where the root of the wing had
to be nonrestrictive in order to avoid affecting the measurements of the wing characteristics. For high-lift
conditions, the pressure difference places an additional force on any seal that is installed.

The semispan installation was also used economically in the development of the XV-15 tilt-rotor model
mentioned earlier. Using the installation in Fig. 33(c), both power-off and power-on tests were made as
described in Ref. 55 to evaluate rotor aerodynamic performance, rotor dynamics, and hardware of the rotor sys-
tems. Even though the root of the wing was rigidly fixed, the wing-rotor dynamic measurements could be used
to predict operating limits of the complete aircraft. The model shown was unpowered and could be assembled
with spars of three different natural frequencies. During the windmilling tests, the effect of damping of the
rotor-pylon-wing twist mode was evaluated with step inputs into the rotor tilt actuation system. The rotor
performance was later studied using a dynamometer test installation. All test results were correlated with
small-scale measurements and predictions.

4.2 Testing Complete Aircraft Configurations

Since the wind-tunnel time for complete aircraft configurations is a major part of the aerodynamic and
dynamic development for any aircraft, conventional or V/STOL, any cost saving in this phase can have a major

effect on the overall development costs. Powered V/STOL models themselves are inherently more expensive than
unpowered conventially configured models. This is a result of additional costs that are incurred not only
because of adding power to the model but also because of the additional effort needed to support the tests.
Other costs come from the increased amount of on-board instrumentation for which leads have to be "funneled

through" or around model supports. As for moving-base or for free-flight operation, the model must be suffi-
ciently light and designed for adequate remote control. Low model weight and light power units are also
required for track-supported models such as used at the Princeton track facility. Examples and problems of
each of the above will now be discussed.

4.2.1 Sting Supports

For the rigid mounting category, sting supports, in addition to high-speed requirements, are sometimes
desirable for minimizing aerodynamic interference induced by model lift, particularly in ground effect. For
some test conditions, strut mounts can induce buoyancy or blockage under the model that may be difficult or
impossible to evaluate. For V/STOL configurations, it is important that the sting support be downstream of

the area generally occupied by lifting jets and flaps. As can be seen by the model support in Figs. 43
and 44 (Refs. 56 and 43), however, the rear end of the model can be adapted to receive a sting of sufficient
size to minimize support flexibility and, at the same time, enter the model with a minimum alteration of the
rear contour.

In the case of the CMAPS-powered model shown in Fig. 45 (Ref. 57) for the two-engine supersonic fighter,
the pressure and instrumentation leads were routed forward under the fuselage. During these tests an attempt
was made to set the narrow segment of sting as short as possible to reduce "bounce" and length of high-pressure
leads. Lower surface pressures were calculated at the model plane-of-symmetry; a summary of the results is
presented in Fig. 46 (Ref. 58). It is evident that lengthening the sting or moving the adapter 0.30 m (12 in.)

farther from the model reduced the influence of the adapter to a very small amount (_Cp = 0.05) at the model
trailing edge.

For some powered fighter configurations, an off-side or overhead mount could minimize restrictions in
direct simulation of the rear of the aircraft such as the mount shown in Fig. 47 for a generic fighter investi-
gation. Instrumentation leads and the air for powering the propulsion jets were routed in through a twin

support at the vertical tails, thus leaving the lower-rear of the model free of any induced flow generated by
the deflector nozzles. This was mandatory in this case because the objective of the test was to evaluate the

effect of nozzle configuration on the aerodynamics of the model over a large Mach number range.

A somewhat larger model built for lower speed with a corresponding lighter construction (lower weight per
size) was tested in the Ames 40 by 80 as shown in Fig. 48 (Refs. 60 and 61). This was a sting-supported model
to be installed on the 40 by 80 turntable, and the model chord plane was vertical so that rotation of the
turntable would change angle of attack through high angles. The configuration was a side-by-side twin-engine
configuration so that the sting installation required a widening of the rear fuselage slightly beyond scaled
width. For this case, it was judged acceptable since aerodynamic corrections could be made using integrated
surface pressure measurements. Also, in this case, it is believed that the thrust of the fans had little
interaction with the sting since they were used to pump air through the inlets, and the momentum of the exhaust
was exceptionally low. A disadvantage of this installation was the asymmetrical lateral/directional effects
on the model induced by the vertical strut.
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Asthefull modelsizecapabilitiesof thelargeatmosphericwindtunnelsareutilized,themodelsmay
becomelargeandheavyenoughto precludestingsupports.Atthisstageavailablestinghardwaremayproduce
mountingthatis tooflexibletomaintaina stableplatformfor thebalance.Thereis probablysomemodel
size-weightlevelfor whichstrutmountsbecomemandatoryfor practicalreasonsandfor whichtherequired
stingsizebecomestoolargeto allowtailoringtherearof themodelto scaledaircraftcontours.There
appearsto benocoherentcriteriato helpin thestrutorstingchoicebutathoroughstudyof theinteraction
of possibleoscillatingaerodynamicloadsandthemodel-supportdynamicsis anessentialpartof thischoice.
4.2.2Strut-SupportedInstallations

Fora configurationinwhichthereis a largeamountof power-inducedcirculationfromthewing,the
singlesupportmountshownin Fig.49(a)(Ref.62),a i/7-scaletestof theH126jet wingaircraft,wasused
successfully.Forcomparisonpurposes,theaircraftitself is shownin Fig.49(b)mountedin theAmes40by80.
Thesmall-scaletestwasmadein theAmes(Army)7by10andemployedapitchlink activatedbyarodrunning
parallelto themainstrut. Thelargefairingenclosedinstrumentationandthepitch-linkactuator.Inmost
cases,thisactuatorcanbelocatedbelowthefloorto reducetherequiredfairingsize. Whenthelift jet
effluxis in thecenterof themodelor it is thoughtthatstrutinterferenceeffectswouldbeexcessive,the
modelcanbeinverted,asshownin Fig.50(Ref.63). Aswithstingmounts,adisadvantageof theheavier
modelsis thatthesingle-strutinstallationtendsto bemoreflexiblein theyaw-rollmodesof oscillation.

Aninterestingtypeof hybridmountingsystem(Fig.51)hasbeenusedbyBoeingVertolfor rotary-wing
testing. It incorporatestheair-driven"powerpod"in supportingahelicoptermodel.Thepoditself hasbeen
attachedto thestingwhichis equippedfor pitchingandyawingtheentiresystem.The"pedestal"orvertical
strutsupportsthemodelthroughthebalanceinsidethemodel.Anoptionalsetupusesthesamepowerpodfor
afloor-mountedinstallation.

Becauseof modelweight,large-andfull-scalemodelsat thelarge-scaletestfacilities (40by80and
80by120at Amesandthe30by60at Langley)mustusefloor-mounted_struts,usually,a three-strutsystemas
shownin Figs.22and52,respectively.Thestrutstendto bestiff in yawif themainstrutsaremountedto
theouterwing,suchasin thecasefor theAV-8Bmodelof Fig.53. Acompromisewasmadein thelanding-
gear-typemountfor theSTOLt_ansportmodelshownin Fig.6(a)(aswellaswiththe698modelof Fig.22).
Forthesemodelstherewasaspecialeffortto designthemodelwiththestrutsawayfromtheundersurfaceof
thewinginorderto minimizeanylocaleffectonwingairflowseparation.

Evenwiththeeffectivethickeningof thestruttipsdueto attachmentof leads,therehasbeenawealth
of evidencethatfor theV/STOLconfigurationstestedto date,,strut-interferenceeffectshavebeenextremely
small.Thisconfidencehascomeprimarilyin thecomparYsonsof full-scalewind-tunneltestdatafor actual
aircraftwiththeir correspondingflight-testresults(Refs.64and65). Datarepresentinganassortmentof
V/STOLaircrafthavecorrelatedwellin bothangleof attackfor agivenlift andpowersetting,aswellas
for stabilityandcontrol.Someof thedatafor thesmalleraircraft,suchastheVZ3andXV3,correlated
wellwithoutapplyinganywallconstraintsorblockagecorrectionsto thedata.Concertedeffortsto general-
izewhatstruttaresexist,assuggestedin Ref.6, havenotbeensuccessfulfor V/STOLmodels,particularly
at thelow-speedendof transitionwithhighflapsettingsandjet deflections.
4.3 Ground-EffectTesting

Asshownbytheexperiencewithevaluationof theflight versuswind-tunneldataof theAugmentorWing
ResearchAircraftat AmesanddiscussedbyCookandWhittley(Ref.64)ahighlydeflectedjet impingingonthe
floorof thewindtunnelmustbeaccuratelysimulated.It mustbepreventedfrommigratingtoorapidlyforward
throughthelowmomentumof thefloorboundarylayerthenblowingbackup(whichmayormaynotbethecasefor
theactualaircraftin flight) andoverthewing.Thiscanbereasonablywellsimulatedbymaintainingasmall
boundarylayerbyeitherorbothBLCandmovingbelt (Ref.66). Anadditionalmethodis themoving-model
techniquesuchashasbeenusedatthePrincetonandothertowingfacilities (Sec.4.4.2). In1977,Campbell
et al. (Ref.67)reviewedthestatusof theuseof wind-tunnelmeasurementsto predictaircraftflight charac-
teristics,includinginitial experiencewiththeC8Ajust mentioned.Sincethattime,similarcomparisonshave
beenmadeusingboththeHarrierandQSRA,resultsofwhichhavenotbeenwelldocumented.Mostof thesecom-
parisonsvarifytheso-calledTurnercriteriawhichis shownin Fig.54(takenfromRefs.29and68)or the
equivalentif BLCis usedto controltheboundarylayeronthegroundplane.Margason(Ref.5)hasalso
reviewedtheneedfor amovingbeltor BLCandconcludedthatfor low-aspect-ratiowingconfigurations,partic-
ularlythoseusingdeflectedthrustconcentratedin asmallarea,lesscontrolof thewind-tunnelfloor
boundarylayeris required.Inanycase,someof theflowphenomenarestrictingthemeasurementof ground
effectof V/STOLconfigurationin awindtunnelarethesameasthosegoverningmodelsizing(Sec.5.1).
Turner'sbeltinstallation(Ref.68)wasin anenlargedinlet of theLangley7byi0300-mphwindtunneland,
asshownin Fig.55,is closeto theinlet of thetest section.Theresultwasasexpected.Asshownin
Fig.56,withthebeltspeedsynchronousto thetunnelairspeed,theboundarylayerwascompletelyeliminated.
Theearlydevelopmentof themovingbeltitself, asindicatedbyButleret al. (Ref.69),wastedius,but
throughadvancementsin materialsandmultipledrivesystems,currentoperationis relativelytroublefree.
Atthepresenttime,mostof themoderatelysizedlow-speedtunnelshavingstingsupportsareequippedwitha
movingbeltsimilarto theonein theBoeingVertoltunnel(Fig.57)wheretheessentialpartsof anybelt
systemarenoted.Asshown,thesuctionslotprovidesBLCforwardof thefrontroller.

Amoreeconomicalmethodof accountingfor thewind-tunnelboundary-layergrowthis theplacementof BLC
onthefloorbyitself ordombinedwitha raisedgroundboardforwardof themodel.Astudywascompletedfor
NASAin 1974(Ref.70)to explorethefeasibilityof aBLCinstallationin theAmes40by80windtunnel.The
objectivewasto facilitateground-effecttesting,aswellasto lowerthetestingairspeedrestrictionfor
propulsivesystemswithhighlydeflectedjets. Thefinally recommendeddesignwasnotusedfor economy
reasons,butthedesign(Fig.58)is still consideredvalid,andbasicaerodynamicstudiesbyHackettet al.,
whichwerevital in understandingBLCrequirements,continuedthroughthe19_0s.Otherinvestigations
weresummarizedin a 1973lecturebyPoisson-Quinton(Ref.71). Inmostof thestudies,small-scalejet flap
testsweremade,usingbothabeltandBLC.Typicalwind-tunnelresults,thoughpreliminary,wereupdatedby
Hackettet al. in Ref.72,andasamplesetof pitching-momentdatawithtail onis shownin Fig.59for the
caseof 2 chordlengthsabovethefloor. Thecorrelationbetweenfixed-groundplusBLCandthemovingbeltare
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good,eventhough,at Cv=3, thejet wakeis probablystartingto impingeonthefloor. Whenthis happens
justbehindanunsweptwlngor two-dimensionaljet flapmodel,theflowpattern,whichincludesastanding
vortex,is establishedandcausessuckdown.Thecontrolandintensityof this flowpatternis affectedby
floorBLC(ormoving-beltvelocity),butmaynotgetestablishedduringthelandingflareor anyother
transientsituation.
4.4 Moving-BaseTesting

If theabovementionedflowpatternsarenotparticularlyReynolds-numbersensitive,moving-basetech-
niquesmaybeusedto evaluatetheireffects.V/STOLmodelsconfiguredto simulatethepowerloadingasa
completeaircraftconfigurationandat thesametimeto havesufficientscaleto ensurequantitativetest
resultstendto becomeheavy.Anexampleof hardwareneededto moveaheavymodelin verticalmotionis shown
in Fig.60,whichwastheresultof adesignstudy(Ref.73)to investigateproblemsof simulatingthetran-
sientgroundeffectsin theAmes40by80. Thedesigncriteriafor aO.ll-scalemodelof a largeSTOLtrans-
portaircraftincludedthefollowingtestconditionsandmodelparameters:

Dynamicpressure,kPa(Ib/ft2)
Reynoldsnumber,RN
Modelweight,KN(Ib)
Modelspan,m(ft)
Sinkrate,m/sec(ft/sec)
Rotationrate(forflate) deg/sec

1.93(40.3)
2.24(10)6
3.23(727)
3.7(12.1)
5.2(17)
67

Scalingfull-scaleflareandtouchdownmaneuversbroughtlargeaccelerations;theresultis thedesignof
Fig.60andprohibitivecosts.Eventhoughatrade-offbetweenfacility costandmodelscalemayreducethe
sizeof thesupportsomewhat,studiesof someof thequestionsontransientgroundeffectsandaerodynamic
dampingusingscaledexperimentsmaystill haveto relyontheuseof trackfacilitiesandfree-flighttech-
niques.Thefollowingis abriefdiscussionof twosuchfacilities.
4.4.1 Free-FlightMethods

Althoughthetermfree-flighttestingis alsoappliedto high-speedor ballistictesting,or thespin-
tunneltestingfor V/STOLeva_uatilon,it hasusuallybecomesynonymouswiththewind-tunnelfree-flightmethods
suchasusedin theLangley30by60. Withuseof this technique,aqualitativeevaluationof flight charac-
teristicsof awiderangeof aircraftconceptshasbeenmadein andoutof groundeffect. Thewell-known
technique(Fig.61)incorporatesFroude-scaledreplicasof theaircraft. Reference74includesa concise
descriptionof significantfactorsof thetechnique,andequationsof motionfor themodelsarelistedin
Ref.75. Formostcurrentaircraftdesigns,thegeometricscaletendsto runfrom1/10to 1/6,withlengths
2.1m(7ft), wingspansof 1.52to 1.83m(5to 6ft), andweightsof 224to267N(50to 70Ib). Withthis
scaling,themodelangularmotionsareupto 3timesasfastasthoseat full scale.Thisbringstherequire-
mentfor multioperators.Sincetheoperatorsmustattemptto keeptheaircraftinonepositionorona pre-
determinedflightpathand,asmentioned,thetime-constantsare1/3full scale,light, quickresponseactuators
havebeendevelopedwhichprovidethepilot withtightcontrol.Themodelis instrumentedtomeasurelinear
andangularaccelerationalongwithcontrol-surfacepositionswhicharetransmittedthroughouttheflight to
stripcharts.Theflight cablealsosuppliesthehigh-pressureair to themodelmotors.Motionpictures
documenttheflightpathandrepresentationsof desiredautomaticstabilityandcontrolaugmentationsystems
areinputintothecontrolsystems.

Althoughthesetechniqueshavegraduallybeenimprovedthroughtheyears,Paulson(Ref.76)still gives
oneof themostdetaileddescriptionsof thetechniqueandits problemsfor usewiththeB-58.Inamore
recentapplication,thefree-flighttechniquewasusedto evaluatethehigh-angle-of-attackcharacteristicsof
aforward-sweptwingfighterconfiguration(Ref.31). Theprogramincludedtheuseof twomodels,onea
O.16-scalemodelof thecompleteaircraftandaO.16-scaleflat platemodel.Theformerwasbothfixed-support
testedandtestedin freeflight. Theprojectwascoupledwithtestsof bothmodelsonafree-to-roll
apparatusinorderto evaluateanyunclampedroll oscillationsat highanglesof attack.Themodelis shown
in Fig.62beingtestedin thefree-flightmode.Dampingin roll evaluatedfromthefree-flighttests
wasfoundto agreequantitativelywiththeflat-platemeasurementsfor moderateanglesof attack.
4.4.2Moving-BaseTrack

Amajordifferencebetweenthefree-flightfacilitiesandthemoving-basetrackis thelatter'scapability
of restrainingcertainundersireddegreesof freedomof themodelmotion.Therefore,it pre-programsaflight-
pathsuchasalandingflareor aroll oscillation. Inthecaseof thePrincetonTrack(PDMT),Froude-scaled
modelsaremovedalongapre-programmedroutethatis 246m(750ft) long(Ref.77). Thetrackis enclosedin
abuilding9.8m(30ft) wideand9.8m(30ft) highand,duringoperation,thebuildingis tightlysealedto
ensurestill air alongtheflightpath.Thefacility hasbeenequippedwithamodelsupportsystem(Fig.63)
thatallowssmallamountsof modeltranslationalmotionfreedom,aswellasangularmotionaboutaball-bearing
gimbalsystem.Anymotionwithrespectto thecarriageis measuredandusedasanerrorsignalin aclosed-
loopservomechanismwhichcanpositionthecarriagewithrespectto themodel.If everythingis working
properly,thereis, essentially,a free-flyingmodelaboutameanfreeflightpathwithwhichto referencethe
naturaldynamicsof themodel.Notealsothatthefacility canbeusedfor steady-state(Putnamrefersto it
asstatic)testingin whichthemodelmovesalongthetrackat aconstantverticalposition.Aversionof the
subsonictilt nacelle(Grumman698)V/STOLaircraftwastestedasreportedin Ref.78, Theprincipalobjec-
tiveof thetestswasto evaluatetransientgroundeffects.Althoughtheresultshavenotbeencompletely
analyzed,experienceindicatesthatwiththismethodof testing,thedatashouldrepresentthoseof steady
state. Foranotherconfiguration,a comparisonof lift anddragdatais reprintedfromRef.77in Fig.64
(coefficientsarebasedonslipstreamdynamicpressure).Thedatashowgoodagreementwithwind-tunneltestresul_ts.
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5. MODELDEVELOPMENT

TheV/STOLwind-tunnelmodelcontinuesto beoneof themostexpensivepartsof anywind-tunnelprogram;
it will beevenmoresoif weareto takecompleteadvantageof recentadvancementsin modelfabrication
techniquesandinstrumentation.Theunpoweredhigh-speedmodelsor thoseadaptableto pressuretunnelsare
expensiveto contourandfinish,particularlyif equippedwithsurface-pressuretaps;thehighcostis aresult
oftheprecisionrequiredandlargedesigndynamicpressure.Addingpowercandoubleor triple anymodelcosts
becauseof (I) thecostof theenginesimulator,(2)thepowersource(electric,compressedair, etc.)hookup,
andcontrol,(3)theaddedinstrumentationneededto evaluatepowersetting,and(4)theadditionaleffort
requiredfor datareduction.Oncetheabovecomplicationsareadded,thereseemsto belittle directcorrela-
tionwiththesizeandcostof themodelitself sothat,in general,withintherestrictionsof givenavailable
wind-tunnelsizes,scaleeffectscontinueto dictateaslargeamodelaspossible.Exceptfor possiblelimi-
tationsowingto theavailablepropulsionsimulators,theinitial approachin modelplanningis to evaluate
themagnitudeof wind-tunnelwallconstraints.Toputall of this togetherrequiresproperuseof material
andconstructiontechniquesin orderto minimizeflexibility, changetime,orshopcosts.Theaboveconsider-
ationswill bediscussedinmoredetail.
5.1 ModelSizing

Figure10wasproposedasacorrelationof experiencein comparingfull-scalewind-tunneltestresults
withthoseof actualflight testsusing,in somecases,thesameairframe.Manyinvestigationshave,subse-
quently,evaluatedmodelsizelimitsandrelatedtheselimitsto themagnitudeof wall-constraintcorrections.
Approachestowall-constraintcorrectionmightbeorganizedintoapplicationto typeof lifting systemsasfollows:

1.

2.

3.
4.
5.

6.

The Iast

Power-off or low thrust deflection: use classical corrections from Pope (Ref. 6)

Power-on with distributed blowing and limited thrust deflection: use Pope based on CLA

Power-on concentrated or focused thrust deflection: Heyson (see Ref. 79 for summary)
High angle of attack, Maskell (Ref. 80) with considerations by Peitzman (Ref. 81) and Stoll (Ref. 60)
Blockage for all cases (Ref. 82)

Corrections using wall pressure signatures (Ref. 83)

two items have shown promise for reliable evaluation of wall-constraint effects combining simple
modeling of the lifting system with wall surface-pressure measurements in the wind-tunnel test section. These
corrections increase rapidly with relative model size to wind-tunnel cross-sectional area and will be enhanced
by the rapidly developing computational methods, such as was done recently by Snyder and Ericksen at Ames
(Ref. 84). In the latter case, PAN-AIR (a high-level paneling code), was used to evaluate wall corrections

with emphasis on a bump under the model. The basic problem and flow modeling are shown in Fig. 65. Lower-
level paneling codes and vortex-lattice simulations of walls and lifting systems are getting more attention
for treatment of the wall-correction problem and are being integrated with the data acquisition software of
some wind tunnel facilities.

The question now is at what point do these corrections become meaningless or questionable. The physical
constraint for highly deflected jets islclassically illustrated in the sketches of Fig. 66, which are reprinted
from Ref. 5, and are taken from the study done by Tyler and Williamson (Ref. 85). Also included is an example
of one jet height and several velocity ratios which were studied for several relative test section sizes. The
general flow pattern at the limit of testing consists of a vortex surrounding the point of jet impingement on
the wind-tunnel floor. In this case (Fig. 66), for two laterally spread jets, the jet exhaust impinged on the
floor at

V_ = 1.31De/h

For the lift-fan data of Hoad and Gentry (Ref. 86), Margason (Ref. 5) runs through an example to keep As at

the tail to 5° , and using Heyson's corrections, Vemin = 0.125. Testing below this velocity would probably

cause a vortex formation. There is a suggestion in Ref. 87 that testing should be limited when the wake

impinges 2.5 wing spans downstream from the model. This is consistent with Turner's criteria of Fig. 54 for
the moving-belt ground plane.

Carbonaro (Ref. 88) considers limits using Heysons criteria of testing for acceptable amounts of correc-

tion. A set of limits of wall corrections was assumed, such as Ai t = ±5 ° , ±2 ° , and ±1/2 ° for maximum
acceptable, moderate, and no corrections, respectively, as listed in Table 3. Values of maximum test lift
coefficient are related to ratio of wing span to tunnel width for several semispan and complete lifting sys-
tems. In this and previous reviews, Carbonaro concluded that the flow breakdown limit applies mainly to
models that are small with respect to the test section; that is, for span-to-width ratios below about 1/4.
Typical lift versus test-section width plots are reprinted in Fig. 67. For larger model dimensions relative
to test-section size, the wall corrections become too large before flow breakdown occurs.

In the author's opinion, many of these limits can be "pushed" and some valuable information still
obtained on power-induced effects for such items as aircraft stability and control, as well as flap and control
loadings. Of equal significance is the fact that Heysons early work using a linear wake trajectory has been
replaced by a free or "relaxed wake" which tends to move the predicted point of impingement on the wind-tunnel
floor downstream. As previously mentioned, low-level CFD methods simulating the complete lifting system as
well as the floor are being considered for evaluating both sizing criteria and wind-tunnel wall corrections,
including support influence.

The general case of blockage and wall-constraint effects has been studied for some time by Hackett. An
updating of this work is published in Ref. 82. The monitoring of wind-tunnel wall pressures and relating the
results to an equivalent distribution of sources and sinks continues to be a promising method of evaluating
the effective blockage of most conceivable V/STOL aircraft configurations. If properly instrumented, an
angle-of-attack correction can also be derived, as illustrated in the block diagrams of Fig. 68(a). The key
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is thecomparisonof themeasuredpressureimprintonwalls(Fig.68(b))withresultsof theoreticalmodeling
of thelifting system.

Investigationsintomethodsof extendingtheselimitshaveincludedchangesinwind-tunneldesignand
methodsof mountingthemodels.Off-centermounting,suchasmovingthemodelhigherin thetestsectionto
effectivelyincreaseDe/h,mayhelpin somecases,butasshownbytheUniversityof Washingtonstudies
(Refs.89and90)it tendedto increasethemagnitudeof thewall-constraintcorrections.Addingslotsto
boththefloorandceilingcouldbeeffectivein delayingtheformationof thefloorvortex.Severalmoder-
atelysizedwindtunnelsareequippedwithhardwareneededfor this. Thesystemsandcorrectionfactorsmay
besimilarto thosebeingposedfor transonictestsections(Ref.91). Unfortunately,theamountof suction
requiredthroughtheslotsandthesystemfor distributingthissuctionis still beingdebated,particularly
for thecaseof high-velocityjet impingement.Alongwiththisdebategoproposalsof so-calledadaptable
walls. Sears'concept(Ref.92),wouldrequirelinkingthewall-constraintporosityandshapeto amathemati-
calmodelof thewakein orderto eliminateanypossibilityof thewakebeingingestedbythelifting system
(Fig.69). Small-scaleexperimentsonthisconceptarenowunderway,butit seemsunlikelythatit couldbe
adaptedto anyof theexistinglargewind-tunnelfacilities.

Asthesizeof thelifting systemincreaseswithrespectto thetunneltest section,theincreasein
blockageand,hence,free-streamvelocitycorrection,resultsfromthecombinedeffectsof modelbulk,
deflectedjets, orseparationwakes.Forhigh-angle-of-attacktests,amodelsizedfor conventionalangle-of-
attackrangescanhavesufficientblockageat anglesof attackabove45° tomaketest resultsmeaningless.
Fortheinvestigationof Refs.60and61,acorrectionwasusedwhichwasbasedonflat-platedragdatasuch
asthoseshownin theplotof Fig.70(a).Thegrossdragonthemodelandsupportswasmeasuredbythe
tunnelscalesystem.Fromthis, model-induceddrag,lessgrossthrustandinletmomentumdrag,wassubtracted
andrelatedto a Aqcorectionin Fig.70(b).Theblockagecorrectionwasassumedto actuniformlyacross
thetest section.Asshownin Fig.70(b),theresultingAq correctionfor themodelwith S/C=3.5%was
11%at 90°. Formodelshavingmuchlargervaluesof S/C,theflowuniformityassumptionwouldbein question.
5.2 PowerSimulation

In evaluatingV/STOLconceptsin thewindtunnelusingscaledmodels,it is becomingevidentthatthe
full-scalejet propertiesmustbeevaluatedin greaterdetail. Earlyexperimenalistsstudiedengine-airframe
aerodynamicinteractionsusingjetsof air thequalityof whichwasseldomdocumented.Asaresult,therewere
differencesbetweenexperimentalresultswhichcouldnotalwaysbeexplainedbysuchthingsasvariancesin
velocityratioandplacementQfthejets.

AmesResearchCenterhasundertakenamajorexperimentalprogramto evaluatetheprincipalscaleeffects
involvedin jet simulation.Theinitial phase,reportedonin Ref.93,includedthefull-scaletestportion
of afull-scaleto small-scalecomparisonprogram.Measurementsof theeffectsof usingactualturbojet/
turbofanengineswill beevaluatedat smallscalebyattemptingto simulatethegeometryandjet characteris-
tics of theengineexhaustandevaluatinganyfull-scaledifferencesin suckdownandgroundeffect. The
results,usingaGeneralElectricYJ-97-GE-100turbojetengine,aresummarizedin Fig.71. Althoughsmall-
scaleexperimentalresultsarenotyetavailablefor comparisonwithexistinglarge-scaledata,it is evident
thatthemeasuredsuckdownis considerablymorethanthepredictionsusingempiricalmethods(Ref.94)which
werebasedonsmall-scalegenericinvestigations.Thisprogramwill continuewiththesmall-scalephaseand
thenbeextendedto co-flowingjets, butuntilwehaveanswersonthesignificanceof modelingall jet charac-
teristics,includingthepossibleneedto simulatejet turbulence,thecurrentobjectivesshouldbeto model
therealjet propertiesof jet cross-sectionandvelocityprofilefor agivenpressureratio.

Theneedto dothelatteris demonstratedin theexperimentsof KuhlmanandOusterhout(Ref.95)and
KuhlmanandWarcup(Ref.96). Aplugwasinsertedin anozzleto changethejet qualities,particularlythe
total pressurevariationacrossthejet. Atypicalresultis shownin Fig.72. Insertingtheplugnearthe
jet exitaddeda lossin momentumto thecenterof thejet andcontributedto amorerapidvelocitydecayand
changein jet trajectoryin thecrossflow.

Theforegoingresultsindicatethatsimulatingjet velocityprofileacrossthejet is mandatoryand,
possibly,thesimulatingof jet turbulencecouldbesignificantfor evaluatingjet-airframeinterference
effects.Astherequirementfor morequantitativetestresultsincreasesthereis aneedfor amorecareful
choiceof thepropulsionsimulatorto beincorporatedin themodeldesign.In planningthetestprogram,this
choiceis integralto modelsizeconsiderationbecauseof theavailabilityof off-the-shelfsimulatorsandthe
largecostof simulatorunitsalreadydeveloped.
5.2.1 SimulatorClassification

Classificationof aircraftengines,andhenceenginesimulationtypes,waswellorganizedbyWulfand
Melzer(Ref.97),asshownin Fig.73.

Thechoiceof simulationis between"self-manufacturedmotionlesssystems"and"expensive,purchased
rotatingsystems,"withrotary-wingmodelpowerandturbofanenginesfalling in this latterclass.Although
notlisted,hydraulic-poweredmotorsshouldnotbeoverlookedfor drivingrotary-wingmodelsor for installa-
tionsin whicha returnleadcanbeinstalled.Table4bridgesthetwobranchesfor air-drivenmodelsclassi-
fiedaccordingto nacelletype.Toextendtheapplicationto full or largescale,I addedtheline item,
gas-turbineengines.Thefollowingthreesectionscoverthefixedblownsimulatorswhichincludethefull,
blownjet, andejector,aswellastheturbinepoweredsimulatorandgasturbineengines.Electricalpoweris
consideredbeyondthescopeof this lecturethoughit is asignificantfactorin modelcosts. Its application
is typicallyamechanicalproblemandoneof tyingintoeitheranon-boardmodelmotoror to awind-tunnel
auxiliarypowerfacility, suchastheoneavailableat theVertoltunnel(Fig.51)or attheAmes40by80
(Fig.9).
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5.2.2 FixedBlownSimulators

Fixedblownsimulatorsprobablyhavebeenandwill continueto beusedbecauseof theireconomy,particu-
larlyfor poweringpartiallycompletemodels.Mostinitial studiesin jet/airframeinterferenceeffects have
incorporated this type of power fer jets, such as the work by Vogler (Ref. 66) and, more recently, in the

jet-in-cross-flow studies of Refs. 44 to 48. The simulation of a uniform jet and, at the same time, getting
it within the contours of a small model of a complete aircraft configuration, is a difficult task, particularly
if the entire assembly must be metric (total forces measured by the balance). Effective designs of the fixed
blown simulator were used in the early studies of the Hawker P-1127 using a I/lO-scale model; an illustration
of the model is reprinted in Fig. 74 (Ref. 63). In the most recent development of the AV-8B, a O.15-scale
model was powered by the airfeed plenum shown in Fig. 75.

In any of these, and also in similar designs, the quality of the jet is a function of the screen or
colander design combined with the size of the settling chamber. A very uniform jet velocity was obtained in
the AV-8B model just mentioned. A very compact installation, it still had a settling chamber up stream of the
conical screen (Fig. 75). In these installations the desired contraction from screen into the nozzle entrance
was difficult to package. For the basic jet-in-cross-flow studies of Aoyagi and Snyder (Ref. 46) and Fearn
and Westen (Ref. 47), a very uniform jet velocity profile was obtained by the relatively bulky design shown in
Fig. 76. The need for some contraction ratio is always a major problem in designing fixed blown propulsion
simulators for complete aircraft models because of limited available space inside the model.

For simulating (approximately) engine inlet velocity, as well as in providing exhaust flow with a minimum
of high pressure flow, the ejector should be considered. The application of the ejector was aided by the work
published in Ref. 98. The ejector used was fed by air with pressures up to 2.41MN/m 2 (350 psig) through a

large number of primary nozzles in order to maintain uniform flow across the ejector. Ejector performance for
one design is presented in Fig. 77. Even though an overall pressure ratio of 1.5 could be obtained, the ratio
of ejector inlet flow (secondary flow) to total exit flow (primary plus secondary) was less than 0.5, meaning
a subscale inlet area. Jet-pump theory indicates that this ratio would increase rapidly as less exit pressure
is required. The effort did show that effective gross thrust for any given ejector configuration could be set
to a known value and maintained, providing a complete calibration was made for each exit nozzle or deflector-
inlet combination. The ejector is adaptable to packaging into nacelle configurations, as shown in Figs. 78(a)
and 78(b) for a turbojet or turbofan, respectively (Refs. 97 and 99). Subsequent development such as the
effort by General Dynamics (Ref. i00) has refined the use of the ejector for simulating high bypass ratio
engines. (See also Ref. 99 for application to an investigation of the EBF- externally blown flap.) The
simulator used here, and shown in Fig. 78(b), simulated the correct exit thrust split but the incorrect inlet

flow simulation, though probably close enough to have had little effect on measurements of EBF performance.

5.2.3 Turbine Powered Simulators: Low Pressure Ratio

The tip-drive fans (Fig. 79) are roughly one tenth the cost of the center turbine driven fans but still
have a big advantage over the ejectors in being able to move the bypass flow at 5 to 6 times the flow rate of
the drive air. As for U.S. designs, a major workhorse has been the 5.5 in. (14 cm) fan shown (Fig. 80)
disassembled and installed in an early Rockwell lifting-nacelle configuration (Ref. I01). The fan was also
used to simulate the fan flow in the built up nacelle (Fig. 81 from Ref. 102). The 5.5-in. fan was combined
with a direct blown simulation of an engine core in a O.094-scale model of a V/STOL research airplane to be
powered by Allison PD 370-16 engines. For this test, the fan turned out to be a reliable performer. One of
the largest of the tip-driven type was Tech Developments 12-in. fan (Ref. 103), which was incorporated in the
high-angle-of-attack model tested in the Ames 40 by 80 tunnel (Ref. 60) and in ongoing inlet work at NASA
Lewis. In both of these cases, it has been used only to suck the inlets rather than provide a propulsive jet
since, at this stage of its development, it has a large radial variation in total pressure. Initial calibra-

tions established, however, that it met the design objectives of an effective pressure ratio of 1.4. Air
supply required for a full total thrust of 800 Ib is 6.5 Ib/sec heated to 250°F. Again, testing experience
has shown this fan to be reliable.

In the final stages of aircraft aerodynamic development, the turbofan or central powered simulator has
had a strong role. Here, the engine bypass and pressure ratios are both closely simulated for given thrust
loadings, T/A L. As a result, for a given nacelle configuration, scaled to the same AL/S as the aircraft,
testing can be accomplished at high subsonic Mach numbers for effective evaluation of cruise drag. The TF 34
simulators are also being used in the small-scale tests of the Grumman 698 (subsonic tactical aircraft) model
shown in Fig. 82 mounted for hover testing in the Ames 40 by 80. Results have not been published for these
tests, but long-range plans involve comparison with full-scale static and wind-tunnel tests, with documenta-

tion of the jet efflux coming from both large- and small-scale models.

5.2.4 Compact Multimission Aircraft Propulsion Simulator

The ejectors and rotating simulators just discussed can be applied only to simulated turbofan engines
having subcritical pressure ratios. For power-on testing of high-performance aircraft, techniques used in the
past have required direct feed of the air and, if the inlet were to be simulated at the same time, a bulky
suction lead would have to be routed outside the wind tunnel. The continuing development and application of
the compact multimission aircraft propulsion simulator, CMAPS (Fig. 83), has had the objective of simulating

both propulsive jet and inlet flow at total pressure ratios corresponding to those of current high-performance
engines. The simulator (Fig. 84) is a miniature four-stage turbocompressor driven by high-pressure air
expanded through a single-stage turbine. It has the capability of changing the engine pressure ratio at a
constant compressor airflow by changing the fraction of turbine discharge air of the exhaust nozzle. The
hardware development started by McDonnell Aircraft Company under the auspices of the Air Force Aero Propulsion
Laboratory; a complete history of its development is provided in Ref. 104.

Ames Research Center is funding a major program to develop the technology for the application of the
CMAPS to small-scale wind tunnel models. The primary objective in this program is to measure the aerodynamic
interaction effects that may result from geometrically close-coupled propulsion/airframe components. A second
objective is the development of installation and test techniques for propulsion-equipped wind-tunnel models.
A third objective is the expansion of the high-speed V/STOL aircraft aerodynamic data base. The initial
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aircraft configuration chosen was that of a two-engine, close-coupled, canard-controlled aircraft similar to

the General Dynamics design (GD 205) resulting from the study of Ref. 2. The model is shown installed in the

Ames 11-ft transonic tunnel in Fig. 45, and the basic model design features are described by Bailey et al.
in Ref. 105.

As the model was developed, the problem of isolating the aerodynamic forces acting on the airframe from

the propulsion forces was addressed, as shown in Fig. 85. As it turned out, a single internal balance was used

which supported all external surfaces except the boattail. The boattail forces were measured using surface-

pressure instrumentation. In this manner, the use of seals was kept to a minimum, with one at each inlet and

exit of the simulator and at the intersection of the support and lower fuselage.

A major part of the program has been the development of the calibration tank (Ref. 106) along with the

control system itself, and the instrumentation needed to monitor inlet flow (Ref. 107). The general purpose

of this facility (Fig. 86) is to obtain pretest relationships between the inlet and exit flow rates and pres-

sure ratios as functions of the CMAPS control air parameters. As may be seen in Fig. 84, it will meter inlet

air supply and exhaust extractors. All the required pressure valve controls and pressure instrumentation will

be linked to a digital control console adjacent to the calibration tank.

5.2.5 Aircraft Engines

For large subscale or full-scale V/STOL testing, gas turbine engines are needed. It is at this scale that
the larger size simulators, such as the 30-cm (12 in.) tip-driven fan, either have limitations in fan pressure

ratio or require an excessive amount of compressed air for continuous operation. For direct blowing, most

wind-tunnel facilities do not have sufficient compressed air capacity in either amount, pressure ratio, or

heat. For large subscale models, the gas turbine engines developed for business jet aircraft adapt well to

scales from 0.3 (for light transport aircraft) to 0.7 for tactical fighter designs. For larger models, there

is a jump in thrust to the 10,O00-1b class engines. Relative geometric profiles for some of the smaller

engines are shown in Fig. 87 (Ref. 4). Ames Research Center has used these engines in several large-scale

research investigations in the 40 by 80 tunnel. The engines have seldom been flightworthy, but have been

maintained sufficiently to run at or near maximum thrust in most cases. An installation of the JT15D engine

(as bypass ratio 3) used in a large-scale upper-surface-blowing investigation is shown in Fig. 88 installed in

a boiler-plate nacelle without some of the nozzle fairings installed. One disadvantage of using this size of

engine is that the fuel control and starter are usually located at the bottom of the engine, making it some-

times difficult to exactly scale the external nacelle contours of an aircraft configuration. However, this

gave few problems in simulating the significant USB geometrical parameters needed for the model of Fig. 89

(Ref. 15).

Maximum rated performance is shown in Fig. 90 (Ref. 4) for an assortment of engines and tip-driven lift

fans (LF 336 and LF 376). The augmented wing compressor and the Viper compressor are gas-turbine driven pumps

which might be too large to be housed in a fuselage of a high-performance fighter model, but they provide cool

air at 30 to 50 Ibm/sec at pressure ratios up to 3.5. The J97 General Electric engine has been used in the

basic research models with one shown in Fig. 8 (Ref. 108) and has a moderate combination of thrust-to-pressure

ratio. NASA "inherited" all of these engines from a military program; they were in good enough condition to

serve as reliable power sources. As can be seen from Fig. 90, there are no engines immediately available in

the lO,O00-1b class with sufficient pressure ratio to simulate some of the larger power plants now being

planned with pressure ratios of 3 to 3.5. This is forcing the model size to nearly full scale for testing

V/STOL supersonic tactical aircraft configurations in order to duplicate pressure ratio.

5.3 Model Planning

The foregoing discussions have attempted to treat model sizing and propulsion simulators separately.
This was done primarily to allow emphasis on significant factors for each topic such as scale effects or

details of the CMAPS. As was the case for using available engines (previous section), in actual model devel-

opment, an experimentalist may have to take whatever power simulation is available. Providing it gives him

the necessary parameters such as NPR or thrust, with the support equipment in the wind tunnel that is avail-

able to him, he will design his model around that particular simulator. The following are a few examples of

V/STOL wind-tunnel model design and construction.

An 11% scale model of the Grunlnan 698 tilt nacelle aircraft is currently undergoing wind-tunnel tests in

several U.S. facilities. This high-speed steel and aluminum model was designed and built simultaneously with

the hover and wind-tunnel testing of the full-scale boiler-plated model. From previous development of conven-

tional military aircraft using the TF34 simulator, sufficient experience with the unit indicated that it could

be a reliable power plant for a V/STOL model. The model was constructed with provisions for both three inter-

nal balances and 200 surface-pressure taps, which resulted in the tubing network (Fig. 91) leading to the

on-board Scanivalves. The nacelles, shown partly disassembled in Fig. 92, were designed to house the TF34

simulator, supply the required amount of drive air, and attach to the model through a floating or metric frame

so that the propulsive forces and moments could be measured independently of those acting on the wing fuselage.

In the process, a coil (Fig. 93) for the fan drive air was developed to minimize force and moment tares from

the air. This was done before the air entered the model since there was not enough room inside the model to

house isolation systems such as flow-through balances (see Sec. 6.1). As might be expected from the complexity

of the model, there were several problems that had to be addressed, not the least of which was the excessive

time needed to assemble the model on the sting. Tests using the model have been considered successes since

reliable data were finally obtained and are now being analyzed. The final cost of this model corrected for

1984 dollars was probably over $800,000, and this did not include the cost of the TF34 simulators (approxi-
mately $100,000 per unit).

The prime question is could the above model have been designed in such a manner that the cost would have

been lower. The answer is that it probably could not have been, although there were alternative designs which

might have included two complete models, one being a force model with no surface-pressure instrumentation and

the other strictly a pressure model. This is commonly done for high-speed conventional models, such as that

shown in Fig. 94, which shows the model plus some of its components needed for alternative configurations and

model changes. However, the principal cost of such models comes from the close tolerances required to
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maintain scaled contours and model components that are interchangeable. Rapid advances in computer aided
design and manufacture (CAD-CAM) techniques where applied to these complicated wind-tunnel models is reducing
some of the time for construction, but there will always be a need for a certain amount of hand fitting, which

runs up costs. Another option for the tilt-nacelle model, could have been the use of an unpowered or transi-
tion test that if the proper propulsion simulator had been available, could have been of larger scale but
sized (about 0.2 scale) to the limits of testing in a moderately sized subsonic tunnel, such as the Langley

V/STOL tunnel. The actual contouring tolerances could have been relaxed and wood-plus-foam-fiberglass mate-
rials considered. Even so, if the on-board pressure instrumentation were needed in both high- and low-speed
models, the total costs of both models would be the same or more than the one that was built.

For large-scaled V/STOL models designed for testing in the NASA large-scale wind tunnels, the options in
model design and construction are more numerous. Levels of sophistication and particular examples are shown
in Table 6 defining several levels of costs. Level I would include the component tests such as the Q-fan
(Fig. 32) or the high-angle-of-attack studies using the O.4-scale model of Fig. 48. Level 2 would include
large but probably subscale models of mostly boiler-plate construction and probably powered by the smaller
gas turbine or turbofan engines mentioned in the previous section. Level 3 would include full-scale, mostly
boiler-plate models using the same or similar power plants as planned for the aircraft, such as the AV-8B

flight-like model of Fig. 5. Since this type of model is full scale, it could incorporate flight-weight com-
ponents where appropriate. Level 4 would be wind-tunnel tests of the actual aircraft remotely controlled as

required and adapted to the wind-tunnel support struts, using either the landing gear attachment points or
reinforced wing-mounting arrangements. The increasing cost with level applies principally to tactical V/STOL
aircraft for level 3 and below since the actual aircraft might be wind-tunnel tested cheaper than the total
costs of building and testing a large but subscale fully powered model.

The term boiler plating might wrongfully have the connotation of making something overly heavy and strong
with little regard for model weight and some of the aircraft details to be modeled. This is generally not the
case at all though some models turn out heavy. What does reduce construction costs is to stay away from com-
plex surface curvatures by using straight-line elements and rolling or multiple bending of the skin. Care must
be taken in the planning of the model so that short straight-line elements simulate the scaled, gradually
changing, surface contours. Stamped or machined elements are used for sharp curves such as leading edges or
inlets. An example was the USB STOL model (Fig. 89) which incorporated the Pratt and Whitney JTI5D powered
nacelle of Fig. 88. For this model, the wing leading edges and flap skin were formed using multiple bends
along straight-line wing elements and the inlets were spun-formed for blending with the skin of the nacelle.
Most of the rest of the model was boiler plated, using welded steel construction, as shown in Fig. 95(a) for
the two-engine fighter model (Fig. 8, Ref. 108). Where the surfaces are not exposed to hot flow, a rigid and
complex surface is obtained by polyurethane foam, which is applied in liquid form between plywood ribs, allowed
to expand, and then cured. This is then shaped and covered with several layers of fiberglass and filled.
Going one step further, this technique can be incorporated with aircraft parts such as was done for the full-
scale AV-8B model shown in Fig. 96 (Ref. 19).

6. TEST OPERATIONS

Planning and carrying out the actual wind-tunnel testing operation must depend not only on the capability
and test limitations of the model but must also rely on full use of support and equipment available at the
wind-tunnel facility. This is particularly true for the powered V/STOL model, testing at all speeds, where
such things as time to set power, tunnel venting (where actual engines are used), change time, or time to take
a data point can determine the success or failure of the test operation. Examples of the latter are factors
considered in Ref. 4 and reprinted in Fig. 97. The actual data were obtained from experiences with gas-turbine
powered models in the Ames 40 by 80, but they are significant factors to be dealt with for any powered-lift
testing, particularly, downtime for configurational changes and time per data point. Many other factors
influence facility use time. The ones chosen for the following brief discussion are instrumentation and data

acquisition, acoustics studies, and flow surveying.

6.1 Instrumentation and Data Acquisition

It will be assumed that the experimentalist has available to him the most up-to-date instrumentation with
potential for on-board use such as Scanivalves (if possible to install on,the model) or a reliable flow-through
balance similar to the one shown in Fig. 98, which was used in the investigation of Ref. 109. For power coming
from cool compressed air, this design integrated the force isolation scheme for the drive air with the balance
itself. In this case, opposing bellows and seals were used with a metric mass-flow distributor routing the air
to various blowing systems in the model. When the air must be heated above about 200°C, the flow-through
feature might not be practical, a result of thermal sensitivity of the force-measuring part of the balance. In
such a case, drive air might have to be "jumped" through an isolation coil similar to that shown in Fig. 93.

As for Scanivalves, at the date of this lecture, many test facilities are converting to the electronic
type which takes advantage of low-cost silicon pressure transducers whose inherent errors (such as thermal zero

shift and output drift with time) are corrected by the periodic on-line calibrations. The advantage of this
system, particularly for a powered model testing under fluctuating load, is that all pressures can be sampled
almost simultaneously within the channel capacity of the data-acquisition system. At first glance, some of
the possible installations seem geometrically smaller than the smallest of the mechanically driven ones
(although this may not generally be the case). A possible disadvantage for low-speed V/STOL use is a measure-
ment error resulting from the requirement to use a ±5-1b/in. 2 transducer for a ±l-lb/in. 2 measurement range.
A unit of this range, however, will be available shortly. Other uncertainties are possible adverse effects
caused by temperature and by high-frequency vibration of the mount.

For large-scale testing, an on-board data-acquisition system using pulse-code and modulation (PCM) similar
to that used in flight testing, has been used for several years with the remote digitizer multiplexer unit
(RMDU) which is evolving into the remote millivolt multiplexer and amplifier module (RAMM) (Ref. 110). This
allows all conditioned analog signals except those from thermocouples to be digitized and multiplexed so that
they can be transmitted to the data acquisition through a minimum of leads. The compatibility of electronic
scanners with this system is under evaluation.
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Thewind-tunneldata-acquisitionsystemthatis findingacceptanceat AmesResearchCenterwithsimilar
systemsin industrywasdetailedbyCambraandTolariin themid-1970s(Refs.111and112).Theversion
finallyadaptedfor theAmesLargeScaleTestFacilities(40by80)is shownin Fig.99. It is sufficiently
flexibleto beappliedto bothdynamicandsteady-statetesting.Alsoshownaretheotheroperatingsystems,
includingtheinputsfromthemechanical(belowthefloor)wind-tunnelbalance(Toledosystem)whicharetrans-
mittedto thedatagatheringprocessor(DGP)throughthecontrolprocessor.Thereal-timeexecutiveprocessor
(REP)processesinformationfromtheDGPandrapidlyreturnstheresultto thedisplaysin thecontrolroom.
FornormalV/STOLtesting,real-timeupdatingof thedisplays,whichmightincludeaerodynamicandpropulsion
parameters,everyI sechasbeenfoundsatisfactory.Theexistingchoicein softwareprovidesalargerange
in timefor datasamplingduringtherecordingprocess.Fordynamictestssuchasrotary-winginvestigations,
thedynamicanalysissystem(DAS)is availableto beusedeitherseparatelyorcombinedwiththeDGP.
6.2 SpecialRequirementsfor AcousticStudies

Thestrengthof all possiblenoisesourcesonanaircraftshouldbedeterminedduringthefinal develop-
mentof theaircraftinorderto obtaintheacousticloadingandto ensurea safeworkingenvironmentfor both
thecrewof theaircraftandground-supportpersonnel.FortheUSBtestsof Schoensteretal. (Ref.113)there
weresmallbutnoticeabledifferencesin surfaceacousticloadsowingto airspeedeventhoughtheairspeed
tested(in theLangley30by60)wasonly16m/sec.Theinvestigationof the727/JT8Dflight noise(Ref.114)
comparedmodel,full-scalewind-tunneldata,static-testdata,andlevelflyoverdatafor the727airplane.
TheJT8Dinstallationshownin Fig.100wasusedwithmicrophonesonatraversingbeam3mto therightof the
enginecenterline(lookingaft) butstill in thenear-field.In thisway,theanglerelativeto thenoise
sourcecouldbechanged.Whenthemeasurementswereextrapolatedto thefar-field,theycomparedwellwiththe
aircraftforward-speedeffects,asshownin Fig.101.Theinvestigationhasbeenoneof severalwhichpointed
outtheneedfor andvalueof continuedacousticstudyin thewindtunnel.
6.2.1 Method

Problemswithandtechniquesfor measuringstrengthsof noisecausedbyjetsandinletsin thewindtunnel
wereevaluatedbySodermanandothersin the1970s(Refs.115-117).Measurementsof noiseradiationfrom
poweredV/STOLmodelscan,generally,beconfinedto usingincompleteorcomponentmodelsof theprimarynoise
systemsaswasdonefor theBoeing727studyjustmentioned.Inthisway,thestudyof forward-speedeffects
ontheacousticsof anaircraftcanbeinvestigatedat full-scalewithaccuratemodelsimulationof theantici-
patednoisesources.Anexceptionto thiswastheevaluationof airframenoise(Ref.118)wherethenoise
radiatingfroma large-scalesemispanmodelof thecompletelifting systemwasmeasuredin the40by80.

Theprincipalproblemareasin measuringnoisein awindtunnelaresource-noisereverberation,background
noiseowingto thewind-tunneldrivesystem,andmicrophonewindnoise.Toalleviatethese,sometunnelfacil-
ities areupdatingtheequipmentand,in effect,doingthefollowing:(1)acousticallytreatingthewalls,
(2)reducingfan-drivenoise,and(3)reducingwindnoisebyrefiningsupportstrutsor eliminatingprotuber-
ancesfromthewalls. Thechallengeis oneof selectingmeasuringdevicesthataredirectionalordiscriminate
againstunwantedsound,andbyusingspecialtechniquesandfree-fieldcomparisonsto evaluatethereverberant
field. Anexampleof thelatter is reverberantfield simulationinwhichthereverberantsoundfield of com-
pactwind-tunnelmodelsis simulatedbyoperatingacalibratedloudspeakerat thenoisesourcelocation
(Ref.119).Whenthereverberantfield levelis known,themodelnoisedatacanbecorrectedto giveapproxi-
matefree-fieldnoiselevels. Thetechniquewasverifiedbywind-tunnelandflight correlationsusingthe
actualflyovernoise,suchastheXV-5comparisonof Fig.102(Ref.120).Unfortunately,wherethenoise
sourceis largeanddistributedrelativeto thesizeof thetunneltestsection,suchasfor spanwisedistrib-
utedblowingmodels,thetechniquecannotbeapplied,andreverberationcorrectionsmustcomefromoperating
bothin thewindtunnel(at V_=O)andin thefreefield.
6.2.2ForwardVelocityEffectsonAdvancedInletSuppressionof FanNoise

Theinlet-fanacousticstudiesof FalarskiandMoore(Ref.121)andof Moore(Ref.122)areotherexamples
inwhichthewindtunnelwaseffectivein evaluatingforward-speedeffectsonacousticsources.Flighteffects
onfannoisehavebeenobservedbyinvestigatorswhohavecomparedturbofanflyovernoisewithstaticnoise,
butthedetailsareobscuredbythemixtureof aircraft-noiseandotherenginenoisesources.Therefore,in
orderto understandfannoise,theactualflight conditionsmustbesimulated.Tosuppresscompressornoise,
advancedinlet designsweredevised.Onedesign,thehybridinlet, hadasmallerthannormalthroatareaand
acoustictreatmentin thediffuser.Theother,thedeflectorinlet, hadanextendedlowinlet lip withacous-
tic treatmentto deflectfannoiseupaswellasforward.Theperformanceandacousticsof bothof these
inletswereto becomparedwiththoseof astandardinletwithnodiffusion.Theobjectivesof theprogram
wereto determinethelow-speedflight effectsassimulatedbythe40by80ontheforwardradiatedfannoise
andontheacousticsuppressioncharacteristicsof theinlets.

Theseriesof testinletswasdesignedaroundtherequirementsof theJTI5D,withtheresultingbasic
nacelleshownin Fig.103.Theturbineandthefanexhaustducts,aswellastheskinof thenacelle,were
acousticallytreated.Thesimulatedflight testsin theAmes40by80usedthetestinstallationshownin
Fig.24(a),whichis shownwithmicrophonestandsinstalledandwithacirculartraversingstandmountedin
frontof themodel.Theentirefan-strutassemblywasmountedontheturntableof thewindtunnelfor angle-
of-attackadjustment.In bothinstallations,afoammatwasinstalledwhichremovedreverberantreflections
fromthenoisedataat all frequenciesabove500Hz. Asaresult,thefan-nacelleinstallation,usingthe
JT15DasmountedwasaboutI/4-scaleof moderatelysizedcurrent,commercialturbofanaircraft'sengines.To
enhancesimulationof thelargerengine,thecoreIGV(inletguidevanes)hadbeenmodified.Thetraversing
microphonewaskeptalignedwiththefreestreambyusingavane-typepivotedmount.Thestandard0.25-in.
microphonewasusedwithafairednoseconeattachedto reducewindnoise.Noiseinsidetheinletwasmea-
suredusingKulitepressuretransducers(outsidetestsonly)mountedflushto thelocalsurface.

Carewiththedetailsjustmentioned,aswellaswithmanyotherfactorsthatinfluencedt_edata,even-
tuallyproducedsomeinterestingresults, the foremost being that the hybrid inlet suppressed the high-tip-
speed fan noise as much as 18 PNdB on a 61-m (200-ft) side line which was scaled to CF6 size engines. In
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addition,it wasfoundthatnosignificantchangesin fan-noisesuppressionfor eitherinletoccurredfor
forward-velocitychangesabove21m/sec(68ft/sec)or for angle-of-attackchangesupto 15°.

Thisis anotherclearinstanceof wind-tunnelacousticstudieshelpingin theevaluationof flyover
noise.In anothersense,it verifiedsomeof thenoiseevaluationtechniquesprevailingtodayandwhichare
applicableto acousticstudiesof V/STOLaircraft.
6.3 FlowSurveying

ForV/STOLwind-tunneltestingoperations,flowvisualization,if notflow-fieldsurveys,canbeamajor
partof thetestprogram.Thetraditionalmethodof usingsurfacetufts, tuft or smokeprobes,anddirectional
flowsurveyingarenecessarytoolsin understandingthecomplicatedflowpatternswhichsurroundapowered-
lifting system,andhowtheyinfluencetheaerodynamicparametersof theaircraft. Forexample,in thestudy
andmodelingof lifting jets, theflowvisualizationtestsof Margason(Ref.123)havebeenconsideredbysome
to besufficientlyquantitativeto definethepathof thejet-in-crossflow.
6.3.1 SurfaceEffectsStudy

Nosubsonictestof a lifting systemis completewithoutthemodelbeingcoveredwithtufts, oil, or
kerosene.Studiessuchasthatshownin Fig.104areinstrumentalin evaluatingflapperformance(and,in this
case,modelinstallationeffects).For areviewof someof thesetechniquesusednearthemodelsurfacethe
readeris referredtoWerle(Ref.124)(ageneraltreatmentof all flow-visualizationtechnique)andMerzkirch
(Crowder)(Ref.125),whohasspecializedin theuseof fluorescentminituftsfor nonintrusivesurface-flow
visualization.

In additionto qualitativeinformationthatflowvisualizationhasalwaysprovided,morequantitative
informationis nowbeingobtained,fromtheimagingandnumericalprocessingof flow-visualizationpictures
(Ref.126).Fortwo-dimensionalflow,flowseparationis becomingwellunderstood,butin threedimensions
theproblemstill needsconsiderableresearch.Forinterpretingflow-visualizationdatain threedimensions,
thecurrenttrendis to usetopologicalconceptswithskin-frictionlines. Althoughtheseconceptshavebeen
withusfor sometime,Huntet al. (Ref.127)initiatedmoreinterestin thesubject.Recently,Kaoand
Burstadt(Ref.128)appliedthemethodto analysisof visualizationdatafor deflectedthrustV/STOLnozzles,
andothershaveappliedit to flowseparationat highspeed.Moreapplicationto analysisof flowpatternson
V/STOLaircraftin hoverandtransitionshouldbecontinuedin viewof theeconomyofobtainingthis typeof
data.
6.3.2 Flow-FieldMeasuring

Methodsincorporatingpressureprobes,LDV,IRimaging,Schleiren,shadowgraphing,andhot-wiresurveying
arebecomingwellestablished.Theuseof smokeis becomingmorecommonfor evaluatingflowfields,and,its
useandlimitationsarethoroughlydiscussedbyWerle(Ref.124)andMueller(Ref.129).Whereaquickapprox-
imateansweris required,theclassicaltuft gridshouldnotbeforgotten.Theresultsof Naeseth(Ref.130)
werecertainlydescriptiveof theeffectof highpowerinducedcirculatorylift ontheupwashneartheengine
inlet (Fig.105).In viewof theneedof surveyequipmentandmethodsthatcanbeusedfor three-dimensional
flowin ahostileenvironment,suchasis thecasefor V/STOLtesting,thefirst two,pressureprobesandLDV,
will bediscussed.Wherethereis aneedfor closestudyof theflowfield involvinghigh-energyjets, partic-
ularlyat smallscaleandhighspeed,aspecialattemptshouldbemadeto utilizethewind-tunnelSchleiren
andshadowgraphingequipment.

Theuseof pressureprobesandrakeshasbeenessentialthroughoutthehistoryof experimentalaerodynam-
ics. Rakesurveyequipment,boundary-layerrakeprobes,anddirectionalpitot tubeshavebeenstandardequip-
mentinmostwind-tunnelfacilities. Forevaluatinghighlydeflectedflows,thedirectionalpitot tubehas
continuedto beusedwheremoresophisticatedmethods,suchasLDV,arenotavailable.Theprobeshavegener-
ally beenlackingin threemainareas:(1)theirpossibleinfluenceontheflowthatis beingmeasured,
(2) lackof sensitivityfor small-flowvelocities,and(3)errorsinmeasurementat highangleswithrespectto
theaxisof theprobe.Thefirst problem,hasbeenreduced-butwill neverbeeliminated-bytheuseof very
smalltubingwithoff-the-shelfprobesof 1/8Dor lessnowbeingavailable.Theseconddifficultycanonlybe
helpedwiththeuseof carefulcalibrationandsensitivepressuretransducersthataregeometricallycloseto
theheadof theprobe.Thethirdproblemhasbeenalleviatedrecentlyin twoways.First, theuseof the
five-holeprobe(Fig.106)(Ref.47)wasenhancedat thehigh-incidencerangebyusingapotential-flowmodel
to definetheformof a calibratingequation.Constantsfor theequationwerethenobtainedduringcalibra-
tion. Second,theotherareahasbeenthedevelopmentof theseven-holeconeshownin Fig.106(Ref.131),
whichhasbeencalibratedovera largespeedrangewithgoodaccuracyupto 80° incidence.

LaserDopplervelocimetry(LDV)hasbeenadvancingsteadilysincetheearly1970s.AtAmesResearch
Center,Orloffet al. havebeenextendingthemeasurementcapabilityfromtheoriginaltwo-color-two-
dimensionalbackscatterlaservelocimeter(2D-LV,7by10installation)to a7byI0 sizethree-dimensional
laserfacility anda largescaletwo-componentunit. Becauseof thecapabilityof obtainingflowvelocityand
directionmeasurementswithnophysicalinterferencewiththeflowitself, thedevelopmentof theequipment
will continue.In a recentpaper,Orloffet al. (Ref.132)reviewedAmesLVDexperience,andplansfor andthe
accuracyof LDVsystemsarediscussedin Ref.133.

Diagramsof the7 by10three-dimensionallaserequipmentarepresentedin Fig.107.It measuresthree
velocitycomponentsbymeansof threeindependentdual-scatterchannelsthatoperatein thebackscatterdirec-
tion. Acombinationof mechanicaltilt andvariablefocusingareusedto ensurethatthefocalpointof the
upperchannelremainscolocatedwiththefocalpointof thelowertwo-dimensionalportionasthelowerfocal
pointmovesin a cross-flowdirectionacrossthetest sectionduringasurvey.Streamwiseandverticalposi-
tioningis accomplishedbymovingtheentirepackage(Fig.107(a))onthedigitallycontrolledtranslation
platformof Fig.107(b).Thestatusof thisequipmentgivesrepeatablepositioningaccuracyto lessthan
0.5mmandtheprobehasafocalvolumeof 1.5mm.It is generallyoperatedin aclosed-loopmodewiththe
computerperformingtest-pointpositioningandpathcontrolthroughcommunicationwithfivestepping-motor
controllers.Ratherthanuseforwardscatter,suchastheJPLequipment(Ref.134),to increase
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signal-to-noiselevelfor sometesting,thesignalis enhancedbyminimizingthebandwidth,theminimumbeing
controlledbyprogrammablefrequencysynthesizers.Theequipmenthasbeenusedextensivelyin theAmesjet-
in-cross-flowprogram,Fig.108(Ref.133),wheresurveysverycloseto theflat plateandnozzlehavebeen
completed.

Thelarge-scalelaserwasdevelopedto mountin thelargewindtunnels,asshownin Fig.109(Ref.135).
It is a singlecolor,dual-beam,scanning,confocalbackscatterLDVthatdirectlysensestwoorthogonalcom-
ponentsof velocity;it is shownin operationin Fig.II0. Athirdcomponentis obtainedbyfurthertransfor-
mationof coupledvelocitycomponents.Asshownin Figs.110and111,thelaserandsystemopticsaremounted
andenclosedin astreamlinecylindricalshellthatis supportedalongthelongitudinalaxis. Thelaserpower
unit andothercomponentsaremountedbelowthecylinderin afairedstructurewhichalsoservesasits sup-
port. Thisentireassemblyis mountedona carriagefor cross-flowtranslation.Thecurrentoptionsfor
rangeare10or20m. Thisunitwill alsobeusedat theAmesOutsideAerodynamicResearchFacility(OARF)
to studyground-effectflowfieldsandingestionproblemsbeinginvestigatedusinglarge-scalemodels.

7. CONCLUDINGREMARKS
Aspectsofwind-tunneltestingof V/STOLaircraftconfigurationshavebeenreviewed.Thechoiceof topics

discussedwere,generally,basedontheirsignificanceto theplanningstageof awind-tunneltestingprogram.
Suggestionsandcommentsontechniquesto beusedduringatestprogramcoveredalargerangein typesof test-
ingandpossibleprogramcosts.Theirvaluewouldbegreatlyenhancedastheplanningphaseof aprogram
maturesbyobtainingdetailsfromthesourceslistedand,mostimportantly,thoroughconsultationwiththe
staffsof thewindtunnelsthatarebeingconsidered.

Thematerialwasorganizedintothegiventopicsasaresultof technicalconsiderationwithlittle,
thoughsome,discussiontreatingtheeconomicsof testing. Becauseof ever-increasingcostof wind-tunneltime
andmodelconstruction,wearealwayslookingfor simplerandcheaperwaysto constructmodelsandfor waysto
reducetunneluse,for example,byfastersamplingof thedatafor eachtestcondition,reducedconfigurational
changetime,orreducingthenumberof datapointsbyimproveddataanalysismethodswhichincorporateuseof
advancedpredictionmethods.

Theaccelerateduseof CFDfor isolatedmultienergyfluid dynamicproblemswhichcanapplyto powered-lift
aircraftconceptscombinedwithamorethoroughunderstandingof scaleeffectsmayeventuallyallowusto feel
moreconfidentwithhoverandtransitiontestingat smallscaleormodelssizedfor the7byI0 sizetunnel.
Thismodelwouldthenberestrictedin on-boardinstrumentation.Useof themoderatelysizedwindtunnels,
suchastheDNWlargertestsectionor theNASALangley4 by7mrequiresamodelof acompleteaircraftcon-
figurationwhichis currentlypushingthestateof theart in miniaturizingon-boardinstrumentationandpower
simulators.In addition,evenat this scaleforatmosphericwindtunnelstherearescaleeffects,andproblems
in powersimulationwhichmightproduceuncertaintyin theresults.Oneis thereforeledto considertheuse
of large-or full-scalemodelspoweredbygasturbineenginesandtestedin NASA'slarge-scaletestfacilities.
Inthesefacilities thereis theopportunityto testwithbothflight-likeandflight-weighthardware,and,for
sometypesof tests,thelevelof total programcostmaynotbemuchabovesmall-scaletunneltesting.

Althoughmostof myexperiencehasbeenwithlarge-scalemethods,I will bethefirst to concedethe
valueof smallexperiments,notonlyfor exploratoryusebutsometimesfor completedevelopmentprogramsin the
designphase.Thereis ampleexperiencein programs,suchastheAV-8Bdevelopmentto showthatit is desir-
abletomakegooduseof small-scaletestingin evaluatingmanyof thebasicaerodynamicproblemsandto verify
theresultsusinglarge-scaletunneltests. Duringanystageof theaerodynamicdevelopment,it is recommended
thatlarge-scaletestingwithflight-likemodelsbephasedintotheV/STOLwind-tunneltestingprogramto
establishhoverandtransitioncharacteristics.And,finally (formediumsizedaircraft),theaircraftitself
shouldbetestedin oneof thelarge-scalewindtunnels,eitherbeforeorduringflight tests,suchaswasdone
for theXV-15tilt rotoror theXFV-5lift fanaircraft. In thisway,aerodynamicpredictions,basedon
small-scalewind-tunneldataenhancedbycomputationaltechniquescanbecontinuallyevaluated.
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TABLE 1.- EVALUATION OF FIXED FRAME FACILITIES (REPRINTED FROM REF. 10)

Facility Objectives NASA/ NASA/ NASA/Ames NASA/Ames GE open throat
requirements Langley Lewis 7' x 10' 40' x 80' anechoic wind tunnel

Nozzle 25 Ibm/sec 25 Ibm/sec

weight flow 25 Ibm/sec 17 Ibm/sec 25 Ibm/sec with modi- with modi- 42 Ibm/sec
fication fication

Nozzle size 4" - 6" ? 4" - 6" 4" 6" 6"

Exhaust gas Burner Ambient -
total tempera- 520°R-2500°R needs to be Ambient Ambient 1600OR Ambient - 3000°R
ture range provided

Nozzle

pressure ratio 1.5 - 4.0 ? 1.5 - 4.0 1.0 - 2.5 1.0 - 2.5 1.5 - 4.0

Free stream 0-400 ft/sec 0-400 ft/sec 0-220 ft/sec 0-400 0-325
velocity range ft/sec ft/sec 0-330 ft/sec

Facility Anechoic Anechoic Hardwall Scottfelt Partially
wall type treated Anechoic

Proven nozzle

Extensive Will have Extensive Extensive Feasibility
Performance performance modifi- capability modifi- modifi-

measurements system + 1/2% cations by Dec. 1974 cations cations to be studied
accuracy

Facility 1974, 1975, 1974, 1975 1976 1974, 1975, 9 weeks/yr 1975, 1976
availability 1976 1976 1976

Duration of

operation Continuous Blowdown Continuous Continuous Continuous Continuous

Capable of per- Would Would Designed to
forming laser Large window Minor require Yes require accept laser
velocimeter high quality modifi- modifi- modifi-

measurements optical glass cations cations cations velocimeter

TABLE 2.- REDUCED VELOCITY SCALE (FROM REF. 34)

Vo/V j 0.05 0.075 0.10 0.15 0.20 0.30 0.50

C (S/Aj = 40) 20 9 5 2 1.25 0.6 0.2

Vo Full 20 30 40 60 80 120 200

scale, 400
Vj m/sec

Vo Model 20

scale, 400 267 200 133 I00 67 40
Vj m/sec

Vo model scale
--- 1.0 0.67 0.5 0.33 0.25 0.17 0.1

Vo full scale/
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TABLE 3.- ACCEPTABLE LIMITS TO WALL CORRECTIONS (FROM REF. 88)

Maximum acceptable Moderate No corrections
Parameter corrections corrections

As ± 5° ± 5 °

qc/q I ± 10% I ± 10%

Ait ± 5 ° ± 2 °

qt/qc I ± 10% 1 ± 5%

Aiw ± 2 ° ± 1/2 °

d(Aiw)/d(y/b) ± 5°/semispan ± l°/semispan

Aq/qc ± 10% ± 5%

± 1/2 °

1 ± 5%

± 1/2 °

1 ± 5%

± 1/2 °

± l°/semispan

± 5%

CORRESPONDING LIMITS FOR A JET FLAPPED
WING OF ASPECT RATIO 6; B/H = 4/3

Moderate Maximum

corrections corrections

Normal mounting at the center of a
4:3 test section

b/B = 1/2 CL < 6.3 CL = 14.1

b/B = 3/4 CL < 0.81 CL < 4.14

Semispan mounting on the floor of a
4:3 test section

(b/2)/H = 1/3 CL < 15 CL < 20.4

(b/2)/H = 1/2 CL < 4.86 CL < Ii.0

(b/2)/H = 2/3 CL < 2.4 CL < 5,82

TABLE 4.- JET THRUST SIMULATION (FROM REF. 5 WITH ADDITIONS

Other
Air supply Principal simulation Comment

Nacelle type requirement simulations capabilities

Flow None .Inlet geometry .Dual flow •Simple

• Inlet Vi/V_ at .Good for aerodynamic
one Mach No, drag studies

Blown jet Large ,Exhaust nozzle ,Dual flow •Simple operation
geometry .Hot gas .Erroneous inlet

• Gross thrust contribution

Ejector Moderate •Inlet geometry/or ,Dual flow .Inlet and exhaust
• Exhaust nozzle flow not simulated

geometry/and simultaneously
• Gross thrust

Turbine Small ,Inlet geometry ,Sensitive mechanism

powered or exhaust ,Difficult to
nozzle geometry simulate inlet and

• Inlet Vi/V and exhaust flow
not gross thrust simultaneously

• Gross thrust and

not inlet Vi/V

Gas turbine Small -Inlet and exhaust .Dual flow .For subscale use

powered nozzle geometry bypass ratio may
• Inlet Vi/V plus not always be

gross thrust simulated
• Exhaust Mach No. .For subscale, engine

and temperature is often over size
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TABLE5.- LEVELSOFSOPHISTICATION:LARGE-SCALEMODELS

GenerallyIncreasingModelCost>
Factor I 2 3 4

Airframe

Propulsion

Controls
Dynamics
Electronics
Other

Approximated Scaled Full-scale
configuration configuration configuration

Simulated Engineused Including
propulsion butsmall somestructure

Scaled Sameengine

Aircraft

Examples
Modeltype 1 2 3 4

Complete High_ (0.4scale)
configuration (VATOLmodels)

Q-fansimulation
of tilt nacelle

Semispan AugWing
40by80

QSRAmodel AV-8B XFV15
40by80 40by80

BasicUSB/EBF G698 AV-8B
researchmodels 40by80 (static)

M-260 XFV12A
97powered Tetherand

ejectormodel static
Coolingdrag Coolingdrag NA

Components Thrustreverser Acoustictest 698nacelle NA
40by80 "D"nozzle
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Figure 5. Effect of scale on the lift character-

istics of the FIIlA airplane landing configuration
(Ref. 4).
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b = 1.91 (6.25) MOUNTED
IN 40 BY 80 INSERT - LANGLEY

V/STOL TUNNEL

b = 11.62 (38.18) MOUNTED
IN 40 BY 80

Figure 6. Externally blown flap models with the
same wing-flap geometry.
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Figure 7. Comparison of wind-tunnel test results
on the externally blown flap models of Fig. 6
(Ref. 4).

H

Figure 9. Rotor test rig mounted in the Ames
40 by 80 tunnel.
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(b) Wing span sizing.

Figure i0. Sizing parameters (Ref. 4).

Figure 8. Large-scale J97-powered model of the
GD205 two-engine fighter configuration.
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Figure 11. Bell/NASA ejector flap wing semispan
model mounted in the Ames 40 by 80 wind tunnel

(Ref. 12).

Figure 12. The Air Force ejector mounted in a

semispan installation in the Ames 7 by 10 tunnel:

6f = 90 o (Ref. 13).
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Figure 13. Measurements using large- and small-

scale models (Ref. 4),
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Figure 15. DNW wind tunnel (Refs. 23, 24).
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Figure 16. ONERA-Modane 8M Facility (Ref. 26).
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_ ......... THIRDDIFEUSER SECOND

FLOW-

CONTROL_

FIRSTIDIFFUSER_'"_c_c°_s_s_c_'°"lii _,.,<ow-
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Figure 17. Planview of the Langley 4 by 7 tunnel (Ref. 27).
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AIR EXHAUST TOWER

BELLMOUTH
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TEST SECTION

AIR INLET TOWER

FAN SECTION

MODEL SHOP
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HIGH SPEED

DIFFUSER

TEST CELL

COMPUTER ROOM

COMPUTER GRAPHICS
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Figure 18. Boeing V/STOL wind tunnel (Ref. 28).

AIR COMPRESSOR BLDG.

Figure 19. The test section of Boeing V/STOL wind
tunnel: open-throat mode.
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Figure 20. Ames large-scale wind-tunnel system

(Ref. 29).
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Figure 21. Elevation of Ames 40 by 80 test section.
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H

Figure 22. Complete model (G698) installed in the
Ames 40 by 80 test section.

Figure 23.
section,

Sketch of Ames 80 by 120 test
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(a) Compressornoisestudies:hybridinlet. (b) 0.11-scaleG698hovertests.
Figure24. Specialtestsetupsin theAmes40by80tunnel.
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Figure 25. Langley 30 by 60 wind tunnel. Figure 26. Langley 30 by 60 test section.
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Figure 27. The test section of the NRC 9-m wind
tunnel.
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Figure 28. Ames Unitary Wind Tunnel System.
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Figure 29. BAC 5.5-m (18 ft) open-throat wind
tunnel (Ref. 34).

Figure 30. General arrangement of circular wing
and ground plane (Ref. 35).
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Figure 31. Effect of C. on the circular wing
. . ._ • . 0 0vertlcal thrust vamatlon with altltude: _ =

(Ref. 35).
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(a) 3/4frontview. (b) Rearview.

Figure32. Qfananda pitch-controlvanemountedin theAmes40by80tunnel(Ref.37).
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(b) Small-scale tests.
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(c) Semispan tests. (d) Dynamometer tests.

(e) Full-scale wind-tunnel tests. (f) XV15 in flight.

Figure 33. XV-15 development.
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Figure 34. Effectiveness of the pitch-control vane

for the subsonic tilt nacelle aircraft: Cj = 10
(Ref. 37).

Figure 36. Jet-in-cross-flow body mounted in Ames
7 by 10 wind tunnel (Ref. 46).

.............iiii_i_i_,,:_i:_,,i:,:_i:_i:_i_i_i___:'ii:_'_._..................._,_

Figure 37. Jet-in-cross-flow installation in the
Langley V/STOL wind tunnel (Ref. 47).

Figure 35. Above the wing inlet study in the Ames
11-ft tunnel (Ref. 42).

Figure 38. Installation of high-lift wing model
and turbine fan between two-dimensional blowing
walls (Ref. 49).
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(a)
,,, ,,,,, ,,,,,, %,,%,,,,,,%,, ,,,,,,,,,, ¸,¸,¸,,,¸¸¸,¸,¸,¸,¸,¸,% ,, %% H

Wind-tunnel installation. (b) Details of model.

Figure 39. A quasi-two-dimensional ejector flap model (Ref. 50).
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_WIN_ NO_.7_L _=

TUNN_ L _t.0_R

R _TA_T I I_N

Figure 40. The cruise blowing model in the Boeing Figure 41. Semispan mount for a wing-fuselage-tail
transonic wind tunnel (Ref. 52). configuration (Ref. 53).
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I

_PEDESTALEXTENSION

I REMOVED

I

FUSELAGE SUPPORT
EXTENSION

(a) Mounting details.

.>:.:.:+:.:.>:.:.:." :

(b) View of installation in the Boeing Vertol wind
tunnel.

Figure 42. Wing-fuselage semispan mount with the fuselage nonmetric (Ref. 54).

::!

Figure 43. Twin-engine, high-speed model mounted Figure 44. Sting mount of an above-the-wing inlet
in the Ames 12-ft tunnel (Ref. 56). model in the Ames 11-ft tunnel (Ref. 43).
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Figure47. Twin-tailsupportfor agenericfighter
modelpoweredbydirectblowing(Ref.59).

Figure45. CMAPS-poweredmodelin theAmes11-ft
transonictunnel(Ref.57).
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Figure 46. Sting-length effect on adapter-induced
pressure increments for the CMAPS-powered model of
Fig. 45 (Ref. 58).

Figure 48. A sting mount installation in the Ames
40 by 80 for high-angle-of-attack studies (Refs.

60, 61).
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(a) Mountedin Ames-ArmyAirMobilityCommand7by (b) TheH-126aircraftmountedin theAmes40
i0 I/7-scale(Ref.62). by80.

Figure49. Wind-tunnelmountingof theH-126.

Figure50. Compositemodelrig forjet-nacelle
modelwithwing-fuselageinverted(Ref.63).
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Figure 51. Pedestal-mounted model on the Vertol power pod (Ref. 28).

Figure 52. Aircraft installation in the Langley

30 by 60.
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(a) 3/4 front.

Figure 53.

(b) 3/4 rear.

Full-scale AV-8B model mounted in She Ames 40 by 80 (Ref. 19).
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Figure 54. Criteria for ground-effect simulation
(Refs. 29, 68).
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Figure 55. Turner's moving-belt installation (Ref. 68).
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layer profiles: station 187; see Fig. 55 (Ref. 68). V/STOL wind tunnel (Ref. 28).
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Figure 58. Ames 40 by 80 proposed floor BLC design
(Ref. 70).

MOVING BELT

_PPORT

_PORT

-I II'_H I
BLC ON FLOOR

16

12

c_ 8

Cp = 1.0

TAIL ON

110 - -2 -3

T NEGATIVE TAIL STALL

AT HIGHER ANGLES

TAIL STRIKES GROUND
AT HIGHER ANGLES

,gTw'NG

AI _WAKE

J
C m

!

A iX [3 MOVING BELT

• • • BLC FLOOR

I_l F//////////////A

j'L ,TAIL ON

/
I

//

_.',_,
, __\N

-1 -2 -3

Cm

I

C# = 3,0 _/J/J/-/_

TAIL ON _///

///

(_.... rW,NG
._ _IWAKE

_ ,
-1 -2

Cm

-3

Figure 59. A sampling of data comparing the use of BLC on the wind-tunnel floor with that of a moving
belt: h/c = 1.0 (Ref. 72).
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Figure 60. Transient ground-effect support design for the Ames 40 by 80 (Ref. 73).
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Figure 61. Free-flight operation in the Langley 30 by 60 wind tunnel (Ref. 74).



Figure 62. ,An X29A model in flight in the Langley
30 by 60 tunnel (Ref. 75).
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Figure 64. Comparison in ground-effect of results
using the Princeton Track with that from three

other facilities: tilt-wing model; h measured
using Princeton model scale (Ref, 77).

(a) Model support.

(b) Grumman 698 model at wheel height.

Figure 63. Use of the Princeton track for ground-
effect tests (Ref. 78).
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(a) PANAIRmodelof Ames12-fttunnel(frontview).

--_ L TEST _1
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(b)

v o
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f
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Schematic of complete PAN AIR model; section shown at plane of symmetry.

Figure 65. Evaluation wall constraints using potential-flow paneling method (Ref. 84).
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Figure 66. Minimum-speed testing limit for a

configuration with two side-by-side lifting jets
at h/D e = 7 (Ref. 5).
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Figure 67. STOL testing limits: Di/L - _! model incenter of wind tunnel; B/H = 4/3 (Ref. 88
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Figure 70. Blockage corrections for high-angle-of-
attack model (Ref. 60).

k-

<3

-.2

LARGE SCALE DATA

_L d12'25
T =-0"013(_) -2"3 (_10.05 (I_D I

0

-.4

55

-.6

-,2

<3

-.4

D/d = 7.93

//
/

a)
I I I I I

LARGE SCALE DATA

------ NPR = 1.40

_.m NPR = 2.65

_L _o.o15r h/d ]-[2"2-0'24(NPR-1)]
-f=

-.6

D/d = 7.93

,// /

b) I I J I I

LARGE SCALE DATA

------ NPR = 1.40

_--- NPR = 2.65

[_1-1"59A L = -(0.00125Did + 0.0185)Csi
T LD dJ

Csi = 1.173 - 0.2495 In(NPR), NPR < 2.0
= 1.061 - 0.0889 In(NPR), NPR >/2.0

-.2

i-

<3

-.4

-.6

D/d = 7.93

(c)

F/
I I I I
2 3 4 5

h/d

Figure 71. Comparison of large-scale data with
predicted lift losses (Ref. 93).
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Figure 74. Hawker P.1127, 1/lOth-scale model (Ref. 63).
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(a) Turbojet (Ref. 97).
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Figure 78. Power simulation by ejectors.

(b) Model installed in the Langley 4- by 7-m
tunnel.

Figure 80. Use of tip-driven fan in a lifting-
nacelle configuration (Ref. 101).

Figure 79. Tip-driven fan assembly.
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Figure 81. Use of 5.5-in. tip-driven fan in Boeing lift-cruise fan assembly (Ref. 102).
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effect tests.
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Figure 84, Schematic of CMAPS.
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Figure 87. Relative engine sizes of small gas
turbines (Ref. 4).

(a) 3/4 front view.

(b) 3/4 rear view.

Figure 88. A JT15D installation for an upper-
surface blowing model (Ref. i04).

Figure 89. Large-scale upper-surface model using
the JT15D engines (Ref. 15).

N

36 x 103

28

24 P

_ 20_

16 1-

121-

81-

41-

0l.,-

Ib _t_]TF34
8 x 103 J52 (1)

+/
6 /

I _ / J97 /
5Pl / / /"

/ / , _-JFE731 (t) ._/°

.f"
- / ./

2 t'_ : ./J AUG. WING

IT / /J_/S_COMPRESSOR.._"'_-
II • Y T / .,- i

1 I_ /,,/ /.. VIPER

R
1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8

PRESSURE RATIO

REFERENCE LINES

Cd - Cv • A N • PN "V2/

WHERE:

A N =

m2

0.485
.... 0.102
..... 0.051
..... 0.014

(t) ESTIMATED

in. 2

1045
220
110
30

Cd = .96

Cv = .95

Figure 90. Thrust as a function of pressure for
several candidate large-scale model engines
(Ref. 4).



Figure 91. 11% G698 on-board instrumentation shown

ready for installation of the fuselage shell.
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Figure 92. Nacelle components for the 11%-scale
G698 model.

Figure 93. Drive-air force-isolation coil for the Figure 94. Model parts for the high-speed, two-
11% G698 model, engine fighter model of Fig. 43.
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(a) Metal fabrication of model shown in Fig, 8. (b) Soft construction use of polyurethane foam.

Figure 95. Boiler-plate model construction.

INLETAND u NEWSTRAKES U
NACELLE

Figure 96. Boiler-plate plan for the full-scale
AV-8B model (Ref. 8).
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Figure 100. JT8D mounted in wind tunnel for the

jet noise investigation (Ref. 114).
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Figure 104. Oil-smear evaluation of flow on multiairfoil two-dimensional model (Ref. 49).
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(a)

Figure 105.

(b) Model at _ = 24° , Cj = 2, q = 479 N/m 2
(10 Ib/ft2).

Tuft grid study for evaluating upwash near inlet of EBF transport model (Ref. 130).
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(a) Three-dimensiona] laser velocimeter. Uses three different colors from a single argon-ion laser to

form three independent dual-scatter backscatter channels.
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Figure 107. Three-dimensional laser velocimeter (Ref. 132).
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Figure 108. Three-dimensional laser velocimeter

operating in the Ames 7 by 10 wind tunnel; jet-in-
cross-flow test.
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Figure 109. Use of two-dimensional laser veloci-

meter in large wind tunnel (40 by 80 shown)
(Ref. 135).

Figure 110. Large laser velocimeter in operation.
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Figure 111. Laser-velocimeter system shown mounted on lateral traversing rails; insert shows
alternative method of receiving for extended-range configuration (both beam pairs are shown in the
insert (Ref. 135).
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